These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29092520)

  • 1. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lower limb exoskeleton control system based on steady state visual evoked potentials.
    Kwak NS; Müller KR; Lee SW
    J Neural Eng; 2015 Oct; 12(5):056009. PubMed ID: 26291321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting lower-limb motor imagery performance through an ensemble method for gait rehabilitation.
    Zhang J; Liu D; Chen W; Pei Z; Wang J
    Comput Biol Med; 2024 Feb; 169():107910. PubMed ID: 38183703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton.
    Choi J; Kim KT; Jeong JH; Kim L; Lee SJ; Kim H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal brain-controlled system for rehabilitation training: Combining asynchronous online brain-computer interface and exoskeleton.
    Liu L; Li J; Ouyang R; Zhou D; Fan C; Liang W; Li F; Lv Z; Wu X
    J Neurosci Methods; 2024 Jun; 406():110132. PubMed ID: 38604523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.
    López-Larraz E; Trincado-Alonso F; Rajasekaran V; Pérez-Nombela S; Del-Ama AJ; Aranda J; Minguez J; Gil-Agudo A; Montesano L
    Front Neurosci; 2016; 10():359. PubMed ID: 27536214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
    Tang Z; Sun S; Zhang S; Chen Y; Li C; Chen S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Error Potentials generated by a lower limb exoskeleton feedback in a BMI for gait control
    Soriano-Segura P; Ferrero L; Ortiz M; Ianez E; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an Exoskeleton-Assisted Gait Motor Imagery Training in Functional Brain Connectivity.
    Gaxiola-Tirado JA; Ianez E; Ortiz M; Gutierrez D; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():429-432. PubMed ID: 31945930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke.
    Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL
    Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
    Vouga T; Zhuang KZ; Olivier J; Lebedev MA; Nicolelis MA; Bouri M; Bleuler H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):131-141. PubMed ID: 28141525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative EEG Evaluation During Robot-Assisted Foot Movement.
    Formaggio E; Masiero S; Bosco A; Izzi F; Piccione F; Del Felice A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1633-1640. PubMed ID: 27845668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study.
    Ferrero L; Soriano-Segura P; Navarro J; Jones O; Ortiz M; Iáñez E; Azorín JM; Contreras-Vidal JL
    J Neuroeng Rehabil; 2024 Apr; 21(1):48. PubMed ID: 38581031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.