These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29092525)

  • 1. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.
    Chen C; Shi S; Zheng Y
    Rev Sci Instrum; 2017 Oct; 88(10):103101. PubMed ID: 29092525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant photodetector for cavity- and phase-locking of squeezed state generation.
    Chen C; Li Z; Jin X; Zheng Y
    Rev Sci Instrum; 2016 Oct; 87(10):103114. PubMed ID: 27802770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization.
    Potnis S; Vutha AC
    Rev Sci Instrum; 2016 Jul; 87(7):076104. PubMed ID: 27475611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization improvement of the squeezed optical fields using a high signal-to-noise ratio bootstrap photodetector.
    Wang X; Wu L; Liang S; Cheng J; Liu Y; Zhou Y; Qin J; Yan Z; Jia X
    Opt Express; 2022 Dec; 30(26):47826-47835. PubMed ID: 36558701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.
    Grote H; Weinert M; Adhikari RX; Affeldt C; Kringel V; Leong J; Lough J; Lück H; Schreiber E; Strain KA; Vahlbruch H; Wittel H
    Opt Express; 2016 Sep; 24(18):20107-18. PubMed ID: 27607619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement.
    Serikawa T; Furusawa A
    Rev Sci Instrum; 2018 Jun; 89(6):063120. PubMed ID: 29960558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of the Noise Performance of the Capacitive Sensing Circuit with a Differential Transformer.
    Xie Y; Fan J; Zhao C; Yan S; Hu C; Tu L
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31096645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement.
    Zhou H; Yang W; Li Z; Li X; Zheng Y
    Rev Sci Instrum; 2014 Jan; 85(1):013111. PubMed ID: 24517749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light.
    Vahlbruch H; Wilken D; Mehmet M; Willke B
    Phys Rev Lett; 2018 Oct; 121(17):173601. PubMed ID: 30411965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 0.6-µW Chopper Amplifier Using a Noise-Efficient DC Servo Loop and Squeezed-Inverter Stage for Power-Efficient Biopotential Sensing.
    Pham XT; Nguyen NT; Nguyen VT; Lee JW
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise.
    Sun X; Wang Y; Tian L; Shi S; Zheng Y; Peng K
    Opt Lett; 2019 Apr; 44(7):1789-1792. PubMed ID: 30933148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a Capacitive Sensing Circuit and Sensitive Structure Based on a Low-Temperature-Drift Planar Transformer.
    Sui Y; Yu T; Wang L; Wang Z; Xue K; Chen Y; Liu X; Chen Y
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research and Optimization of High-Performance Front-End Circuit Noise for Inertial Sensors.
    Chen Y; Liu X; Wang L; Yu T; Wang Z; Xue K; Sui Y; Chen Y
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact, low-threshold squeezed light source.
    Arnbak J; Jacobsen CS; Andrade RB; Guo X; Neergaard-Nielsen JS; Andersen UL; Gehring T
    Opt Express; 2019 Dec; 27(26):37877-37885. PubMed ID: 31878561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low noise transimpedance amplifier for optical receiver.
    Li C; Xie S; Zhou G; Mao L; Qiu B
    Rev Sci Instrum; 2021 Mar; 92(3):034706. PubMed ID: 33820025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.
    Yang W; Shi S; Wang Y; Ma W; Zheng Y; Peng K
    Opt Lett; 2017 Nov; 42(21):4553-4556. PubMed ID: 29088211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First long-term application of squeezed states of light in a gravitational-wave observatory.
    Grote H; Danzmann K; Dooley KL; Schnabel R; Slutsky J; Vahlbruch H
    Phys Rev Lett; 2013 May; 110(18):181101. PubMed ID: 23683187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors.
    Grote H
    Rev Sci Instrum; 2007 May; 78(5):054704. PubMed ID: 17552849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Analysis of a Continuously Tunable Low Noise Amplifier for Software Defined Radio.
    Aneja A; Li XJ
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.