These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29092543)

  • 21. Zero-reflection acoustic metamaterial with a negative refractive index.
    Park CM; Lee SH
    Sci Rep; 2019 Mar; 9(1):3372. PubMed ID: 30833636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Metamaterials-Based Hypersensitized Liquid Sensor Integrating Omega-Shaped Resonator with Microstrip Transmission Line.
    Abdulkarim YI; Deng L; Karaaslan M; Altıntaş O; Awl HN; Muhammadsharif FF; Liao C; Unal E; Luo H
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.
    Liu A; Zhou X; Huang G; Hu G
    J Acoust Soc Am; 2012 Oct; 132(4):2800-6. PubMed ID: 23039546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.
    Abu-Marasa MO; El-Khozondar HJ
    Springerplus; 2015; 4():733. PubMed ID: 26636021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable Transmission and Deterministic Interface states in Double-zero-index Acoustic Metamaterials.
    Zhao W; Yang Y; Tao Z; Hang ZH
    Sci Rep; 2018 Apr; 8(1):6311. PubMed ID: 29679074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental observation of true left-handed transmission peaks in metamaterials.
    Aydin K; Guven K; Kafesaki M; Zhang L; Soukoulis CM; Ozbay E
    Opt Lett; 2004 Nov; 29(22):2623-5. PubMed ID: 15552665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of interface states in single-negative metamaterial layered structures based on the phase properties.
    Zheng J; Chen Y; Chen Z; Wang X; Han P; Yong Z; Wang Y; Leung CW; Soukoulis CM
    Opt Express; 2013 Jul; 21(14):16742-52. PubMed ID: 23938526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials.
    Lee SH; Kang BS; Kim GM; Roh YR; Kwak MK
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces.
    Campione S; Basilio LI; Warne LK; Sinclair MB
    Opt Express; 2015 Feb; 23(3):2293-307. PubMed ID: 25836097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
    Dellavale D; Urteaga R; Bonetto FJ
    J Acoust Soc Am; 2010 Jan; 127(1):186-97. PubMed ID: 20058963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailored acoustic metamaterials. Part II. Extremely thick-walled Helmholtz resonator arrays.
    Smith MJA; Abrahams ID
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220125. PubMed ID: 35756874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures.
    Islam MT; Rahman MN; Samsuzzaman M; Mansor MF; Misran N
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Design Scheme for Structural Fundamental Frequency of Porous Acoustic Metamaterials.
    Zhou Y; Li H; Ye M; Shi Y; Gao L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the resonance in high-temperature superconducting terahertz metamaterials.
    Chen HT; Yang H; Singh R; O'Hara JF; Azad AK; Trugman SA; Jia QX; Taylor AJ
    Phys Rev Lett; 2010 Dec; 105(24):247402. PubMed ID: 21231556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoviscous-acoustic metamaterials to damp acoustic modes in complex shape geometries at low frequencies.
    Kone TC; Lopez M; Ghinet S; Dupont T; Panneton R
    J Acoust Soc Am; 2021 Sep; 150(3):2272. PubMed ID: 34598627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A highly accurate measurement of resonator
    Gyüre-Garami B; Sági O; Márkus BG; Simon F
    Rev Sci Instrum; 2018 Nov; 89(11):113903. PubMed ID: 30501306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of shock-free pressure waves in shaped resonators by boundary driving.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2515-21. PubMed ID: 17550150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact electric-LC resonators for metamaterials.
    Withayachumnankul W; Fumeaux C; Abbott D
    Opt Express; 2010 Dec; 18(25):25912-21. PubMed ID: 21164937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Meta-Wearable Antennas-A Review of Metamaterial Based Antennas in Wireless Body Area Networks.
    Zhang K; Soh PJ; Yan S
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.