These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2909255)

  • 1. Pre-steady-state kinetic study on the formation of compound I and II of ligninase.
    Harvey PJ; Palmer JM; Schoemaker HE; Dekker HL; Wever R
    Biochim Biophys Acta; 1989 Jan; 994(1):59-63. PubMed ID: 2909255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol.
    Lundell T; Wever R; Floris R; Harvey P; Hatakka A; Brunow G; Schoemaker H
    Eur J Biochem; 1993 Feb; 211(3):391-402. PubMed ID: 8436103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.
    Tien M; Kirk TK; Bull C; Fee JA
    J Biol Chem; 1986 Feb; 261(4):1687-93. PubMed ID: 3003081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A steady-state study on the formation of Compounds II and III of myeloperoxidase.
    Hoogland H; Dekker HL; van Riel C; van Kuilenburg A; Muijsers AO; Wever R
    Biochim Biophys Acta; 1988 Aug; 955(3):337-45. PubMed ID: 2840965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium.
    Marquez L; Wariishi H; Dunford HB; Gold MH
    J Biol Chem; 1988 Aug; 263(22):10549-52. PubMed ID: 3392025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of soybean peroxidase and hydrogen peroxide pH 2.4-12.0, and veratryl alcohol at pH 2.4.
    Nissum M; Schiødt CB; Welinder KG
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):339-48. PubMed ID: 11342058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies.
    Marquez LA; Dunford HB
    J Biol Chem; 1995 Dec; 270(51):30434-40. PubMed ID: 8530471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique.
    Liu A; Huang X; Song S; Wang D; Lu X; Qu Y; Gao P
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Sep; 59(11):2547-51. PubMed ID: 12963450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chlorinating activity of human myeloperoxidase: high initial activity at neutral pH value and activation by electron donors.
    Zuurbier KW; Bakkenist AR; Wever R; Muijsers AO
    Biochim Biophys Acta; 1990 Feb; 1037(2):140-6. PubMed ID: 2155024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the oxidation of ferrocyanide by lactoperoxidase compound II.
    Kardel DM; Dunford HB; Alexandre S
    Eur J Biochem; 1990 Nov; 194(1):259-62. PubMed ID: 2253620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin peroxidase compound III. Mechanism of formation and decomposition.
    Wariishi H; Gold MH
    J Biol Chem; 1990 Feb; 265(4):2070-7. PubMed ID: 2298739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium.
    Andrawis A; Johnson KA; Tien M
    J Biol Chem; 1988 Jan; 263(3):1195-8. PubMed ID: 3335539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped-flow kinetic study of the H2O2 oxidation of substrates catalyzed by microperoxidase-8.
    Yeh HC; Wang JS; Su YO; Lin WY
    J Biol Inorg Chem; 2001 Oct; 6(8):770-7. PubMed ID: 11713684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide.
    Marquez LA; Huang JT; Dunford HB
    Biochemistry; 1994 Feb; 33(6):1447-54. PubMed ID: 8312264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of reaction of myeloperoxidase with nitrite.
    Burner U; Furtmuller PG; Kettle AJ; Koppenol WH; Obinger C
    J Biol Chem; 2000 Jul; 275(27):20597-601. PubMed ID: 10777476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2005 Feb; 434(1):51-9. PubMed ID: 15629108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of lignin peroxidase by hydrogen peroxide during the oxidation of phenols.
    Chung N; Aust SD
    Arch Biochem Biophys; 1995 Feb; 316(2):851-5. PubMed ID: 7864643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical intermediates in veratryl alcohol oxidation by ligninase. NMR evidence.
    Gilardi G; Harvey PJ; Cass AE; Palmer JM
    Biochim Biophys Acta; 1990 Nov; 1041(2):129-32. PubMed ID: 2265198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of oxidation of serotonin by myeloperoxidase compounds I and II.
    Dunford HB; Hsuanyu Y
    Biochem Cell Biol; 1999; 77(5):449-57. PubMed ID: 10593608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.