These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29092554)

  • 1. Comparison of psychoacoustic-based reverberance parameters.
    Lee D; van Dorp Schuitman J; Cabrera D; Qiu X; Burnett I
    J Acoust Soc Am; 2017 Oct; 142(4):1832. PubMed ID: 29092554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of loudness on the reverberance of music: reverberance prediction using loudness models.
    Lee D; Cabrera D; Martens WL
    J Acoust Soc Am; 2012 Feb; 131(2):1194-205. PubMed ID: 22352494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverberation strength perceived by normal-hearing listeners predictable based on time-varying binaural loudness.
    Ellis GM; Zahorik P
    Hear Res; 2021 Sep; 409():108316. PubMed ID: 34340021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subjective and objective evaluations of a scattered sound field in a scale model opera house.
    Ryu JK; Jeon JY
    J Acoust Soc Am; 2008 Sep; 124(3):1538-49. PubMed ID: 19045645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of signal type on perceived reverberance.
    Teret E; Pastore MT; Braasch J
    J Acoust Soc Am; 2017 Mar; 141(3):1675. PubMed ID: 28372042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.
    Park HK; Bradley JS
    J Acoust Soc Am; 2009 Sep; 126(3):1219-30. PubMed ID: 19739735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the perceived reverberation in different rooms for a set of musical instrument sounds.
    Osses Vecchi A; McLachlan G; Kohlrausch A
    J Acoust Soc Am; 2020 Jul; 148(1):EL93. PubMed ID: 32752774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings.
    Park HK; Bradley JS
    J Acoust Soc Am; 2009 Jul; 126(1):208-19. PubMed ID: 19603878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling preference ratings of concert hall acoustics using subjective sensory profiles.
    Lokki T; Pätynen J; Kuusinen A; Tervo S
    J Acoust Soc Am; 2012 Nov; 132(5):3148-61. PubMed ID: 23145600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking.
    Biberger T; Ewert SD
    J Acoust Soc Am; 2017 Aug; 142(2):1098. PubMed ID: 28863616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychoacoustic cues to emotion in speech prosody and music.
    Coutinho E; Dibben N
    Cogn Emot; 2013; 27(4):658-84. PubMed ID: 23057507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of stimuli for timbre perception studies.
    Labuschagne IB; Hanekom JJ
    J Acoust Soc Am; 2013 Sep; 134(3):2256-67. PubMed ID: 23967955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model.
    van Dorp Schuitman J; de Vries D; Lindau A
    J Acoust Soc Am; 2013 Mar; 133(3):1572-85. PubMed ID: 23464027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the perceived reverberation in different room acoustic environments using a binaural auditory model.
    Osses Vecchi A; Kohlrausch A; Lachenmayr W; Mommertz E
    J Acoust Soc Am; 2017 Apr; 141(4):EL381. PubMed ID: 28464633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concert hall acoustics assessment with individually elicited attributes.
    Lokki T; Patynen J; Kuusinen A; Vertanen H; Tervo S
    J Acoust Soc Am; 2011 Aug; 130(2):835-49. PubMed ID: 21877799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an auditory emotion recognition function using psychoacoustic parameters based on the International Affective Digitized Sounds.
    Choi Y; Lee S; Jung S; Choi IM; Park YK; Kim C
    Behav Res Methods; 2015 Dec; 47(4):1076-1084. PubMed ID: 25319038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a Characterization of Background Music Audibility in Broadcasted TV.
    Batlle-Roca R; Herrera-Boyer P; Meléndez-Catalán B; Molina E; Serra X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the just noticeable difference of early decay time for symphonic halls.
    Del Solar Dorrego F; Vigeant MC
    J Acoust Soc Am; 2022 Jan; 151(1):80. PubMed ID: 35105034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined evaluation of interaural time and intensity differences: psychoacoustic results and computer modeling.
    Gaik W
    J Acoust Soc Am; 1993 Jul; 94(1):98-110. PubMed ID: 8354765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring basilar-membrane motion from tone-burst otoacoustic emissions and psychoacoustic measurements.
    Epstein M; Florentine M
    J Acoust Soc Am; 2005 Jan; 117(1):263-74. PubMed ID: 15704419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.