BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29092906)

  • 1. Application and utility of mass cytometry in vaccine development.
    Reeves PM; Sluder AE; Paul SR; Scholzen A; Kashiwagi S; Poznansky MC
    FASEB J; 2018 Jan; 32(1):5-15. PubMed ID: 29092906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass cytometry: a highly multiplexed single-cell technology for advancing drug development.
    Atkuri KR; Stevens JC; Neubert H
    Drug Metab Dispos; 2015 Feb; 43(2):227-33. PubMed ID: 25349123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometry and the future of vaccine development.
    Bolton DL; Roederer M
    Expert Rev Vaccines; 2009 Jun; 8(6):779-89. PubMed ID: 19485757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of recent innovations in the use of mass cytometry in support of drug development.
    Nassar AF; Ogura H; Wisnewski AV
    Drug Discov Today; 2015 Oct; 20(10):1169-75. PubMed ID: 26092491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad Immune Monitoring and Profiling of T Cell Subsets with Mass Cytometry.
    Brodie TM; Tosevski V
    Methods Mol Biol; 2018; 1745():67-82. PubMed ID: 29476463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular signatures of vaccine adjuvants.
    Olafsdottir T; Lindqvist M; Harandi AM
    Vaccine; 2015 Sep; 33(40):5302-7. PubMed ID: 25989447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of Vaccination.
    Zepp F
    Methods Mol Biol; 2016; 1403():57-84. PubMed ID: 27076125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems integration of innate and adaptive immunity.
    Zak DE; Aderem A
    Vaccine; 2015 Sep; 33(40):5241-8. PubMed ID: 26102534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Profiling Human T Cell Heterogeneity by Mass Cytometry.
    Cheng Y; Newell EW
    Adv Immunol; 2016; 131():101-34. PubMed ID: 27235682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets.
    Pillet S; Kobasa D; Meunier I; Gray M; Laddy D; Weiner DB; von Messling V; Kobinger GP
    Vaccine; 2011 Sep; 29(39):6793-801. PubMed ID: 21211587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Cellular Immune Responses to Vaccines.
    Svitek N; Taracha EL; Saya R; Awino E; Nene V; Steinaa L
    Methods Mol Biol; 2016; 1349():247-62. PubMed ID: 26458841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis.
    Chattopadhyay PK; Roederer M
    Am J Transplant; 2015 May; 15(5):1155-61. PubMed ID: 25708158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization.
    Nassar AF; Wisnewski AV; Raddassi K
    Anal Bioanal Chem; 2017 Mar; 409(9):2363-2372. PubMed ID: 28124752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung.
    Neuhaus V; Chichester JA; Ebensen T; Schwarz K; Hartman CE; Shoji Y; Guzmán CA; Yusibov V; Sewald K; Braun A
    Vaccine; 2014 May; 32(26):3216-22. PubMed ID: 24731807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing Mass Cytometry at the Bedside to Study the Immunological Basis of Human Diseases: Distinctive Immune Features in Patients with a History of Term or Preterm Birth.
    Gaudillière B; Ganio EA; Tingle M; Lancero HL; Fragiadakis GK; Baca QJ; Aghaeepour N; Wong RJ; Quaintance C; El-Sayed YY; Shaw GM; Lewis DB; Stevenson DK; Nolan GP; Angst MS
    Cytometry A; 2015 Sep; 87(9):817-29. PubMed ID: 26190063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity.
    Connors J; Cusimano G; Mege N; Woloszczuk K; Konopka E; Bell M; Joyner D; Marcy J; Tardif V; Kutzler MA; Muir R; Haddad EK
    Hum Vaccin Immunother; 2023 Dec; 19(3):2267295. PubMed ID: 37885158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems-Level Immune Monitoring by Mass Cytometry.
    Lakshmikanth T; Brodin P
    Methods Mol Biol; 2019; 1913():33-48. PubMed ID: 30666597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass cytometry analysis of immune cells in the brain.
    Korin B; Dubovik T; Rolls A
    Nat Protoc; 2018 Feb; 13(2):377-391. PubMed ID: 29370157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Dimensional Single-Cell Analysis with Mass Cytometry.
    Brodie TM; Tosevski V
    Curr Protoc Immunol; 2017 Aug; 118():5.11.1-5.11.25. PubMed ID: 28762483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new intranasal influenza vaccine based on a novel polycationic lipid--ceramide carbamoyl-spermine (CCS) I. Immunogenicity and efficacy studies in mice.
    Joseph A; Itskovitz-Cooper N; Samira S; Flasterstein O; Eliyahu H; Simberg D; Goldwaser I; Barenholz Y; Kedar E
    Vaccine; 2006 May; 24(18):3990-4006. PubMed ID: 16516356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.