BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

869 related articles for article (PubMed ID: 29092934)

  • 1. Variant Review with the Integrative Genomics Viewer.
    Robinson JT; Thorvaldsdóttir H; Wenger AM; Zehir A; Mesirov JP
    Cancer Res; 2017 Nov; 77(21):e31-e34. PubMed ID: 29092934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.
    Pandey RV; Pabinger S; Kriegner A; Weinhäusel A
    PLoS One; 2016; 11(2):e0147697. PubMed ID: 26840129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
    Thorvaldsdóttir H; Robinson JT; Mesirov JP
    Brief Bioinform; 2013 Mar; 14(2):178-92. PubMed ID: 22517427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VIPER: a web application for rapid expert review of variant calls.
    Wöste M; Dugas M
    Bioinformatics; 2018 Jun; 34(11):1928-1929. PubMed ID: 29346510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
    Dunn JG; Weissman JS
    BMC Genomics; 2016 Nov; 17(1):958. PubMed ID: 27875984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of pipelines for mapping, variant calling and interval padding, for the analysis of NGS germline panels.
    Zanti M; Michailidou K; Loizidou MA; Machattou C; Pirpa P; Christodoulou K; Spyrou GM; Kyriacou K; Hadjisavvas A
    BMC Bioinformatics; 2021 Apr; 22(1):218. PubMed ID: 33910496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NGS_SNPAnalyzer: a desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data.
    Lee DJ; Kwon T; Kim CK; Seol YJ; Park DS; Lee TH; Ahn BO
    Genes Genomics; 2020 Nov; 42(11):1311-1317. PubMed ID: 32980993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive fundamental somatic variant calling and quality management strategies for human cancer genomes.
    He X; Chen S; Li R; Han X; He Z; Yuan D; Zhang S; Duan X; Niu B
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32510555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NGS for Sequence Variants.
    Teng S
    Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSN and CAVA: variant annotation tools for rapid, robust next-generation sequencing analysis in the clinical setting.
    Münz M; Ruark E; Renwick A; Ramsay E; Clarke M; Mahamdallie S; Cloke V; Seal S; Strydom A; Lunter G; Rahman N
    Genome Med; 2015 Jul; 7(1):76. PubMed ID: 26315209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.
    van den Akker J; Mishne G; Zimmer AD; Zhou AY
    BMC Genomics; 2018 Apr; 19(1):263. PubMed ID: 29665779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.
    Guo Y; Ding X; Shen Y; Lyon GJ; Wang K
    Sci Rep; 2015 Sep; 5():14283. PubMed ID: 26381817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics Data Analysis of Next-Generation Sequencing Data from Heterogeneous Tumor Samples.
    Landman SR; Hwang TH
    Methods Mol Biol; 2017; 1633():185-192. PubMed ID: 28735488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing: A Solution for Transferring Integrated Pangenomic Studies into Routine Practice?
    Garinet S; Néou M; de La Villéon B; Faillot S; Sakat J; Da Fonseca JP; Jouinot A; Le Tourneau C; Kamal M; Luscap-Rondof W; Boeva V; Gaujoux S; Vidaud M; Pasmant E; Letourneur F; Bertherat J; Assié G
    J Mol Diagn; 2017 Sep; 19(5):776-787. PubMed ID: 28826610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.