These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Chitwood DH; Kumar R; Headland LR; Ranjan A; Covington MF; Ichihashi Y; Fulop D; Jiménez-Gómez JM; Peng J; Maloof JN; Sinha NR Plant Cell; 2013 Jul; 25(7):2465-81. PubMed ID: 23872539 [TBL] [Abstract][Full Text] [Related]
3. Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits. Ofner I; Lashbrooke J; Pleban T; Aharoni A; Zamir D Plant J; 2016 Jul; 87(2):151-60. PubMed ID: 27121752 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Nunes-Nesi A; Alseekh S; de Oliveira Silva FM; Omranian N; Lichtenstein G; Mirnezhad M; González RRR; Sabio Y Garcia J; Conte M; Leiss KA; Klinkhamer PGL; Nikoloski Z; Carrari F; Fernie AR Metabolomics; 2019 Mar; 15(4):46. PubMed ID: 30874962 [TBL] [Abstract][Full Text] [Related]
5. Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. Fernandez-Moreno JP; Levy-Samoha D; Malitsky S; Monforte AJ; Orzaez D; Aharoni A; Granell A J Exp Bot; 2017 May; 68(11):2703-2716. PubMed ID: 28475776 [TBL] [Abstract][Full Text] [Related]
6. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. Fulop D; Ranjan A; Ofner I; Covington MF; Chitwood DH; West D; Ichihashi Y; Headland L; Zamir D; Maloof JN; Sinha NR G3 (Bethesda); 2016 Oct; 6(10):3169-3184. PubMed ID: 27510891 [TBL] [Abstract][Full Text] [Related]
7. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Chapman NH; Bonnet J; Grivet L; Lynn J; Graham N; Smith R; Sun G; Walley PG; Poole M; Causse M; King GJ; Baxter C; Seymour GB Plant Physiol; 2012 Aug; 159(4):1644-57. PubMed ID: 22685170 [TBL] [Abstract][Full Text] [Related]
8. Genomic Dissection of a Wild Region in a Superior Aliberti A; Olivieri F; Graci S; Rigano MM; Barone A; Ruggieri V Genes (Basel); 2020 Jul; 11(8):. PubMed ID: 32722275 [TBL] [Abstract][Full Text] [Related]
9. Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Pascual L; Albert E; Sauvage C; Duangjit J; Bouchet JP; Bitton F; Desplat N; Brunel D; Le Paslier MC; Ranc N; Bruguier L; Chauchard B; Verschave P; Causse M Plant Sci; 2016 Jan; 242():120-130. PubMed ID: 26566830 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of solanum pimpinellifolium using genotyping by sequencing. Celik I; Gurbuz N; Uncu AT; Frary A; Doganlar S BMC Genomics; 2017 Jan; 18(1):1. PubMed ID: 28049423 [TBL] [Abstract][Full Text] [Related]
11. Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Gur A; Semel Y; Osorio S; Friedmann M; Seekh S; Ghareeb B; Mohammad A; Pleban T; Gera G; Fernie AR; Zamir D Theor Appl Genet; 2011 Feb; 122(2):405-20. PubMed ID: 20872209 [TBL] [Abstract][Full Text] [Related]
15. Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Kinkade MP; Foolad MR Theor Appl Genet; 2013 Aug; 126(8):2163-75. PubMed ID: 23702514 [TBL] [Abstract][Full Text] [Related]
16. Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites. Haggard JE; Johnson EB; St Clair DA G3 (Bethesda); 2013 Dec; 3(12):2131-46. PubMed ID: 24122052 [TBL] [Abstract][Full Text] [Related]
17. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Fridman E; Carrari F; Liu YS; Fernie AR; Zamir D Science; 2004 Sep; 305(5691):1786-9. PubMed ID: 15375271 [TBL] [Abstract][Full Text] [Related]
18. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Stevens R; Buret M; Duffé P; Garchery C; Baldet P; Rothan C; Causse M Plant Physiol; 2007 Apr; 143(4):1943-53. PubMed ID: 17277090 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit. Di Matteo A; Sacco A; De Stefano R; Frusciante L; Barone A Biochem Genet; 2012 Dec; 50(11-12):908-21. PubMed ID: 22911514 [TBL] [Abstract][Full Text] [Related]
20. A Solanum neorickii introgression population providing a powerful complement to the extensively characterized Solanum pennellii population. Brog YM; Osorio S; Yichie Y; Alseekh S; Bensal E; Kochevenko A; Zamir D; Fernie AR Plant J; 2019 Jan; 97(2):391-403. PubMed ID: 30230636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]