These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29093811)
1. Precision Microfilters as an all in one System for Multiplex Analysis of Circulating Tumor Cells. Adams DL; Alpaugh RK; Martin SS; Charpentier M; Chumsri S; Cristofanilli M; Adams DK; Makarova OV; Zhu P; Li S; Tang CM; Stefansson S RSC Adv; 2016; 6(8):6405-6414. PubMed ID: 29093811 [TBL] [Abstract][Full Text] [Related]
2. Microfilter-Based Capture and Release of Viable Circulating Tumor Cells. Rawal S; Ao Z; Datar RH; Agarwal A Methods Mol Biol; 2017; 1634():93-105. PubMed ID: 28819843 [TBL] [Abstract][Full Text] [Related]
3. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
4. The systematic study of circulating tumor cell isolation using lithographic microfilters. Adams DL; Zhu P; Makarova OV; Martin SS; Charpentier M; Chumsri S; Li S; Amstutz P; Tang CM RSC Adv; 2014; 9():4334-4342. PubMed ID: 25614802 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis. Khamenehfar A; Li PC Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214 [TBL] [Abstract][Full Text] [Related]
6. Progress in Circulating Tumor Cell Research Using Microfluidic Devices. Gwak H; Kim J; Kashefi-Kheyrabadi L; Kwak B; Hyun KA; Jung HI Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424286 [TBL] [Abstract][Full Text] [Related]
7. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
8. Design and Clinical Application of an Integrated Microfluidic Device for Circulating Tumor Cells Isolation and Single-Cell Analysis. Xu M; Liu W; Zou K; Wei S; Zhang X; Li E; Wang Q Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401770 [TBL] [Abstract][Full Text] [Related]
9. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) from Clinical Blood Samples. Gogoi P; Sepehri S; Zhou Y; Gorin MA; Paolillo C; Capoluongo E; Gleason K; Payne A; Boniface B; Cristofanilli M; Morgan TM; Fortina P; Pienta KJ; Handique K; Wang Y PLoS One; 2016; 11(1):e0147400. PubMed ID: 26808060 [TBL] [Abstract][Full Text] [Related]
10. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Lianidou ES; Markou A Clin Chem; 2011 Sep; 57(9):1242-55. PubMed ID: 21784769 [TBL] [Abstract][Full Text] [Related]
11. Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Lee M; Kim EJ; Cho Y; Kim S; Chung HH; Park NH; Song YS Gynecol Oncol; 2017 May; 145(2):361-365. PubMed ID: 28274569 [TBL] [Abstract][Full Text] [Related]
12. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Deng Y; Zhang Y; Sun S; Wang Z; Wang M; Yu B; Czajkowsky DM; Liu B; Li Y; Wei W; Shi Q Sci Rep; 2014 Dec; 4():7499. PubMed ID: 25511131 [TBL] [Abstract][Full Text] [Related]
13. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples. Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817 [TBL] [Abstract][Full Text] [Related]
14. Using the polymeric circulating tumor cell chip to capture circulating tumor cells in blood samples of patients with colorectal cancer. Kure K; Hosoya M; Ueyama T; Fukaya M; Sugimoto K; Tomiki Y; Ohnaga T; Sakamoto K; Komiyama H Oncol Lett; 2020 Mar; 19(3):2286-2294. PubMed ID: 32194728 [TBL] [Abstract][Full Text] [Related]
15. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Hvichia GE; Parveen Z; Wagner C; Janning M; Quidde J; Stein A; Müller V; Loges S; Neves RP; Stoecklein NH; Wikman H; Riethdorf S; Pantel K; Gorges TM Int J Cancer; 2016 Jun; 138(12):2894-904. PubMed ID: 26789903 [TBL] [Abstract][Full Text] [Related]
17. A cell transportation solution that preserves live circulating tumor cells in patient blood samples. Stefansson S; Adams DL; Ershler WB; Le H; Ho DH BMC Cancer; 2016 May; 16():300. PubMed ID: 27150191 [TBL] [Abstract][Full Text] [Related]
18. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932 [TBL] [Abstract][Full Text] [Related]
19. A simple pyramid-shaped microchamber towards highly efficient isolation of circulating tumor cells from breast cancer patients. Liu F; Wang S; Lu Z; Sun Y; Yang C; Zhou Q; Hong S; Wang S; Xiong B; Liu K; Zhang N Biomed Microdevices; 2018 Sep; 20(4):83. PubMed ID: 30221311 [TBL] [Abstract][Full Text] [Related]
20. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Khetani S; Mohammadi M; Nezhad AS Biotechnol Bioeng; 2018 Oct; 115(10):2504-2529. PubMed ID: 29989145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]