These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2909404)

  • 41. A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells.
    Peng HB; Baker LP; Dai Z
    J Cell Biol; 1993 Jan; 120(1):197-204. PubMed ID: 7678012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction.
    Anderson MJ; Klier FG; Tanguay KE
    J Cell Biol; 1984 Nov; 99(5):1769-84. PubMed ID: 6386827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells.
    Peng HB; Ali AA; Dai Z; Daggett DF; Raulo E; Rauvala H
    J Neurosci; 1995 Apr; 15(4):3027-38. PubMed ID: 7722643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AChRs Are Essential for the Targeting of Rapsyn to the Postsynaptic Membrane of NMJs in Living Mice.
    Chen PJ; Martinez-Pena Y Valenzuela I; Aittaleb M; Akaaboune M
    J Neurosci; 2016 May; 36(21):5680-5. PubMed ID: 27225759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of basic fibroblast growth factor on acetylcholine receptors in cultured muscle cells.
    Dai Z; Peng HB
    Neurosci Lett; 1992 Sep; 144(1-2):14-8. PubMed ID: 1331909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transmembrane mechanisms in the assembly of the postsynaptic apparatus at the neuromuscular junction.
    Geng L; Qian YK; Madhavan R; Peng HB
    Chem Biol Interact; 2008 Sep; 175(1-3):108-12. PubMed ID: 18513712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intracellular and surface acetylcholine receptors during the normal development of a frog skeletal muscle.
    Goldfarb J; Cantin C; Cohen MW
    J Neurosci; 1990 Feb; 10(2):500-7. PubMed ID: 2303855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic Control of Postsynaptic Differentiation in Muscle.
    Peng HB; Zhu DL
    Biol Bull; 1989 Apr; 176(2S):126-129. PubMed ID: 29300579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial distribution of acetylcholine receptors at developing chick neuromuscular junctions.
    Smith MA; Slater CR
    J Neurocytol; 1983 Dec; 12(6):993-1005. PubMed ID: 6363632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes.
    Wang MD; Axelrod D
    Dev Dyn; 1994 Sep; 201(1):29-40. PubMed ID: 7803845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reorganization and stabilization of acetylcholine receptor aggregates on rat myotubes.
    Krikorian JG; Daniels MP
    Dev Biol; 1989 Feb; 131(2):524-38. PubMed ID: 2912807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of presynaptic specializations induced by basic polypeptide-coated latex beads in spinal cord cultures.
    Peng HB; Markey DR; Muhlach WL; Pollack ED
    Synapse; 1987; 1(1):10-9. PubMed ID: 3505363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acetylcholine receptors are required for agrin-induced clustering of postsynaptic proteins.
    Marangi PA; Forsayeth JR; Mittaud P; Erb-Vögtli S; Blake DJ; Moransard M; Sander A; Fuhrer C
    EMBO J; 2001 Dec; 20(24):7060-73. PubMed ID: 11742983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insertion and internalization of acetylcholine receptors at clustered and diffuse domains on cultured myotubes.
    Bursztajn S; Berman SA; McManaman JL; Watson ML
    J Cell Biol; 1985 Jul; 101(1):104-11. PubMed ID: 4008524
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acetylcholine receptor clusters are associated with nuclei in rat myotubes.
    Bruner JM; Bursztajn S
    Dev Biol; 1986 May; 115(1):35-43. PubMed ID: 2422072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glia cell line-derived neurotrophic factor regulates the distribution of acetylcholine receptors in mouse primary skeletal muscle cells.
    Yang LX; Nelson PG
    Neuroscience; 2004; 128(3):497-509. PubMed ID: 15381279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres.
    Merlie JP; Sanes JR
    Nature; 1985 Sep 5-11; 317(6032):66-8. PubMed ID: 3839905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Agrin fragments differentially induce ectopic aggregation of acetylcholine receptors in myotomal muscles of Xenopus embryos.
    Godfrey EW; Roe J; Heathcote RD
    J Neurobiol; 2000 Sep; 44(4):436-45. PubMed ID: 10945898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression and channel properties of alpha-bungarotoxin-sensitive acetylcholine receptors on chick ciliary and choroid neurons.
    McNerney ME; Pardi D; Pugh PC; Nai Q; Margiotta JF
    J Neurophysiol; 2000 Sep; 84(3):1314-29. PubMed ID: 10980005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes.
    Role LW; Matossian VR; O'Brien RJ; Fischbach GD
    J Neurosci; 1985 Aug; 5(8):2197-204. PubMed ID: 3839524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.