BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2909411)

  • 1. Development of the enteric nervous system in the moth. II. Stereotyped cell migration precedes the differentiation of embryonic neurons.
    Copenhaver PF; Taghert PH
    Dev Biol; 1989 Jan; 131(1):85-101. PubMed ID: 2909411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the enteric nervous system in the moth. I. Diversity of cell types and the embryonic expression of FMRFamide-related neuropeptides.
    Copenhaver PF; Taghert PH
    Dev Biol; 1989 Jan; 131(1):70-84. PubMed ID: 2909410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An identified set of visceral muscle bands is essential for the guidance of migratory neurons in the enteric nervous system of Manduca sexta.
    Copenhaver PF; Horgan AM; Combes S
    Dev Biol; 1996 Nov; 179(2):412-26. PubMed ID: 8903356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of the insect enteric nervous system: differentiation of the enteric ganglia from a neurogenic epithelium.
    Copenhaver PF; Taghert PH
    Development; 1991 Dec; 113(4):1115-32. PubMed ID: 1811931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental expression of G proteins in a migratory population of embryonic neurons.
    Horgan AM; Lagrange MT; Copenhaver PF
    Development; 1994 Apr; 120(4):729-42. PubMed ID: 7600953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenesis in the insect enteric nervous system: generation of premigratory neurons from an epithelial placode.
    Copenhaver PF; Taghert PH
    Development; 1990 May; 109(1):17-28. PubMed ID: 2209463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic development of the enteric nervous system of the grasshopper Schistocerca americana.
    Ganfornina MD; Sánchez D; Bastiani MJ
    J Comp Neurol; 1996 Sep; 372(4):581-96. PubMed ID: 8876455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segment-specific modifications of a neuropeptide phenotype in embryonic neurons of the moth, Manduca sexta.
    Wall JB; Taghert PH
    J Comp Neurol; 1991 Jul; 309(3):375-90. PubMed ID: 1918442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eph receptor expression defines midline boundaries for ephrin-positive migratory neurons in the enteric nervous system of Manduca sexta.
    Coate TM; Swanson TL; Proctor TM; Nighorn AJ; Copenhaver PF
    J Comp Neurol; 2007 May; 502(2):175-91. PubMed ID: 17348007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A developmental role for the heterotrimeric G protein Go alpha in a migratory population of embryonic neurons.
    Horgan AM; Lagrange MT; Copenhaver PF
    Dev Biol; 1995 Dec; 172(2):640-53. PubMed ID: 8612978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A delayed role for nitric oxide-sensitive guanylate cyclases in a migratory population of embryonic neurons.
    Wright JW; Schwinof KM; Snyder MA; Copenhaver PF
    Dev Biol; 1998 Dec; 204(1):15-33. PubMed ID: 9851840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria).
    Stern M; Knipp S; Bicker G
    J Comp Neurol; 2007 Mar; 501(1):38-51. PubMed ID: 17206618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The timing of initial neuropeptide expression by an identified insect neuron does not depend on interactions with its normal peripheral target.
    Wall JB; Taghert PH
    J Neurobiol; 1991 Dec; 22(9):935-56. PubMed ID: 1795159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the transverse nerve in moth embryos. II. Stereotyped growth by the axons of identified neuroendocrine neurons.
    Carr JN; Taghert PH
    Dev Biol; 1988 Dec; 130(2):500-12. PubMed ID: 3197922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and organization of a nitric-oxide-sensitive peripheral neural plexus in larvae of the moth, Manduca sexta.
    Grueber WB; Truman JW
    J Comp Neurol; 1999 Feb; 404(1):127-41. PubMed ID: 9886030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta.
    Knittel LM; Swanson TL; Lee HJ; Copenhaver PF
    Dev Biol; 2023 Jul; 499():31-46. PubMed ID: 37121309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse signaling via a glycosyl-phosphatidylinositol-linked ephrin prevents midline crossing by migratory neurons during embryonic development in Manduca.
    Coate TM; Wirz JA; Copenhaver PF
    J Neurosci; 2008 Apr; 28(15):3846-60. PubMed ID: 18400884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G protein-mediated inhibition of neuronal migration requires calcium influx.
    Horgan AM; Copenhaver PF
    J Neurosci; 1998 Jun; 18(11):4189-200. PubMed ID: 9592098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for fasciclin II in the guidance of neuronal migration.
    Wright JW; Snyder MA; Schwinof KM; Combes S; Copenhaver PF
    Development; 1999 Jun; 126(14):3217-28. PubMed ID: 10375511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.