These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 29094114)

  • 41. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).
    Adachi J; Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1394():87-100. PubMed ID: 26700043
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Goals and Challenges in Bacterial Phosphoproteomics.
    Yagüe P; Gonzalez-Quiñonez N; Fernánez-García G; Alonso-Fernández S; Manteca A
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphoproteomics--finally fulfilling the promise?
    Rogers LD; Foster LJ
    Mol Biosyst; 2009 Oct; 5(10):1122-9. PubMed ID: 19756301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of elemental mass spectrometry in phosphoproteomic applications.
    Maes E; Tirez K; Baggerman G; Valkenborg D; Schoofs L; Encinar JR; Mertens I
    Mass Spectrom Rev; 2016; 35(3):350-60. PubMed ID: 25139451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing.
    Paulo JA; Schweppe DK
    Proteomics; 2021 May; 21(9):e2000140. PubMed ID: 33455035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.
    Ye J; Zhang Z; You C; Zhang X; Lu J; Ma H
    J Exp Bot; 2016 Sep; 67(17):4993-5008. PubMed ID: 27531888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The coming of age of phosphoproteomics--from large data sets to inference of protein functions.
    Roux PP; Thibault P
    Mol Cell Proteomics; 2013 Dec; 12(12):3453-64. PubMed ID: 24037665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.
    Tsai CF; Wang YT; Yen HY; Tsou CC; Ku WC; Lin PY; Chen HY; Nesvizhskii AI; Ishihama Y; Chen YJ
    Nat Commun; 2015 Mar; 6():6622. PubMed ID: 25814448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.
    Chan CY; Gritsenko MA; Smith RD; Qian WJ
    Expert Rev Proteomics; 2016; 13(4):421-33. PubMed ID: 26960075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of digestion conditions on phosphoproteomics.
    Dickhut C; Feldmann I; Lambert J; Zahedi RP
    J Proteome Res; 2014 Jun; 13(6):2761-70. PubMed ID: 24724590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift.
    Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P
    J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Illuminating signaling network functional biology through quantitative phosphoproteomic mass spectrometry.
    Tedford NC; White FM; Radding JA
    Brief Funct Genomic Proteomic; 2008 Sep; 7(5):383-94. PubMed ID: 18836207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Phosphorylated Proteins on a Global Scale.
    Iliuk A
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e48. PubMed ID: 29927094
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.