BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29094190)

  • 1. Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms.
    Projecto-Garcia J; Le Port AS; Govindji T; Jollivet D; Schaeffer SW; Hourdez S
    J Mol Evol; 2017 Dec; 85(5-6):172-187. PubMed ID: 29094190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and evolution of the unique tetra-domain hemoglobin from the hydrothermal vent scale worm Branchipolynoe.
    Projecto-Garcia J; Zorn N; Jollivet D; Schaeffer SW; Lallier FH; Hourdez S
    Mol Biol Evol; 2010 Jan; 27(1):143-52. PubMed ID: 19755665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila.
    Bailly X; Jollivet D; Vanin S; Deutsch J; Zal F; Lallier F; Toulmond A
    Mol Biol Evol; 2002 Sep; 19(9):1421-33. PubMed ID: 12200470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Analysis of a Scale Worm Provides Insights into Its Adaptation to Deep-Sea Hydrothermal Vents.
    He X; Wang H; Xu T; Zhang Y; Chen C; Sun Y; Qiu JW; Zhou Y; Sun J
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37401460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species.
    Zhang Y; Sun J; Chen C; Watanabe HK; Feng D; Zhang Y; Chiu JM; Qian PY; Qiu JW
    Sci Rep; 2017 Apr; 7():46205. PubMed ID: 28397791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida).
    Zhang Y; Sun J; Rouse GW; Wiklund H; Pleijel F; Watanabe HK; Chen C; Qian PY; Qiu JW
    Mol Phylogenet Evol; 2018 Aug; 125():220-231. PubMed ID: 29625228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globin gene family evolution and functional diversification in annelids.
    Bailly X; Chabasse C; Hourdez S; Dewilde S; Martial S; Moens L; Zal F
    FEBS J; 2007 May; 274(10):2641-52. PubMed ID: 17451435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.
    Bailly X; Leroy R; Carney S; Collin O; Zal F; Toulmond A; Jollivet D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5885-90. PubMed ID: 12721359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New
    Kim SL; Choi H; Eyun SI; Kim D; Yu OH
    Zool Stud; 2022; 61():e21. PubMed ID: 36330019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branchinotogluma bipapillata n. sp., a new branchiate scale worm (Annelida: Polynoidae) from two hydrothermal fields on the Southwest Indian Ridge.
    Zhou Y; Wang Y; Zhang D; Wang C
    Zootaxa; 2018 Sep; 4482(3):527-540. PubMed ID: 30313812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globins in the marine annelid Platynereis dumerilii shed new light on hemoglobin evolution in bilaterians.
    Song S; Starunov V; Bailly X; Ruta C; Kerner P; Cornelissen AJM; Balavoine G
    BMC Evol Biol; 2020 Dec; 20(1):165. PubMed ID: 33371890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps.
    Cheng J; Hui M; Sha Z
    BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae.
    Carney SL; Flores JF; Orobona KM; Butterfield DA; Fisher CR; Schaeffer SW
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Mar; 146(3):326-37. PubMed ID: 17240180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and functional properties of the extracellular coelomic hemoglobins from the deep-sea, hydrothermal vent scaleworm Branchipolynoe symmytilida.
    Hourdez S; Lallier FH; Martin-Jézéquel V; Weber RE; Toulmond A
    Proteins; 1999 Mar; 34(4):435-42. PubMed ID: 10081956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages.
    Fontanillas E; Galzitskaya OV; Lecompte O; Lobanov MY; Tanguy A; Mary J; Girguis PR; Hourdez S; Jollivet D
    Genome Biol Evol; 2017 Feb; 9(2):279-296. PubMed ID: 28082607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new species and new record of deep-sea scale-worms (Polynoidae: Polychaeta) from the Okinawa Trough and the South China Sea.
    Sui J; Li X
    Zootaxa; 2017 Mar; 4238(4):562-570. PubMed ID: 28603250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two new species of Branchinotogluma (Polynoidae: Annelida) from chemosynthesis-based ecosystems in Japan.
    Jimi N; Chen C; Fujiwara Y
    Zootaxa; 2022 May; 5138(1):17-30. PubMed ID: 36101041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobins from deep-sea hydrothermal vent scaleworms of the genus Branchipolynoe: a new type of quaternary structure.
    Hourdez S; Lallier FH; Green BN; Toulmond A
    Proteins; 1999 Mar; 34(4):427-34. PubMed ID: 10081955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeny of Echinoderm Hemoglobins.
    Christensen AB; Herman JL; Elphick MR; Kober KM; Janies D; Linchangco G; Semmens DC; Bailly X; Vinogradov SN; Hoogewijs D
    PLoS One; 2015; 10(8):e0129668. PubMed ID: 26247465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levensteiniella manusensis sp. nov., a new polychaete species (Annelida: Polynoidae) from deep-sea hydrothermal vents in the Manus Back-Arc Basin, Western Pacific.
    Wu X; Xu K
    Zootaxa; 2018 Feb; 4388(1):102-110. PubMed ID: 29690467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.