These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29094198)

  • 1. The turtle visual system mediates a complex spatiotemporal transformation of visual stimuli into cortical activity.
    Hoseini MS; Pobst J; Wright NC; Clawson W; Shew W; Wessel R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):167-181. PubMed ID: 29094198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Information in a Non-retinotopic Visual Cortex.
    Fournier J; Müller CM; Schneider I; Laurent G
    Neuron; 2018 Jan; 97(1):164-180.e7. PubMed ID: 29249282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of visually evoked local field potentials in isolated turtle brain: patterned versus blank stimulation.
    Luo Q; Lu H; Lu H; Yang Y; Gao JH
    J Neurosci Methods; 2010 Mar; 187(1):26-32. PubMed ID: 20034520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unit responses of the turtle forebrain to visual stimuli.
    Gusel'nikov VI; Morenkov ED; Pivovarov AS
    Neurosci Behav Physiol; 1972; 5(3):235-42. PubMed ID: 4570704
    [No Abstract]   [Full Text] [Related]  

  • 5. Visual responses and connectivity in the turtle pretectum.
    Fan TX; Weber AE; Pickard GE; Faber KM; Ariel M
    J Neurophysiol; 1995 Jun; 73(6):2507-21. PubMed ID: 7666156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation analysis of corticotectal interactions in the cat visual system.
    Brecht M; Singer W; Engel AK
    J Neurophysiol; 1998 May; 79(5):2394-407. PubMed ID: 9582215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the cortical representation of form and motion stimuli generated by a retina implant.
    Schanze T; Greve N; Hesse L
    Graefes Arch Clin Exp Ophthalmol; 2003 Aug; 241(8):685-93. PubMed ID: 12898282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays.
    Normann RA; Warren DJ; Ammermuller J; Fernandez E; Guillory S
    Vision Res; 2001; 41(10-11):1261-75. PubMed ID: 11322971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of synaptic inputs to local cortical activity differs among neurons and adapts after stimulus onset.
    Wright NC; Hoseini MS; Yasar TB; Wessel R
    J Neurophysiol; 2017 Dec; 118(6):3345-3359. PubMed ID: 28931610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes.
    Senseman DM
    Vis Neurosci; 1999; 16(1):65-79. PubMed ID: 10022479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal mechanisms in receptive fields of visual cortical simple cells: a model.
    Wörgötter F; Holt G
    J Neurophysiol; 1991 Mar; 65(3):494-510. PubMed ID: 2051191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced cortical oscillations in turtle cortex are coherent at the mesoscale of population activity, but not at the microscale of the membrane potential of neurons.
    Hoseini MS; Pobst J; Wright N; Clawson W; Shew W; Wessel R
    J Neurophysiol; 2017 Nov; 118(5):2579-2591. PubMed ID: 28794194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimentally derived model shows that adaptation acts as a powerful spatiotemporal filter of visual responses in the rat collicular neurons.
    Bytautiene J; Baranauskas G
    Sci Rep; 2018 Jun; 8(1):8942. PubMed ID: 29895940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation modulates correlated subthreshold response variability in visual cortex.
    Wright NC; Hoseini MS; Wessel R
    J Neurophysiol; 2017 Aug; 118(2):1257-1269. PubMed ID: 28592686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice.
    Durand S; Iyer R; Mizuseki K; de Vries S; Mihalas S; Reid RC
    J Neurosci; 2016 Nov; 36(48):12144-12156. PubMed ID: 27903724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and sources of response variability and its coordination in visual cortex.
    Hoseini MS; Wright NC; Xia J; Clawson W; Shew W; Wessel R
    Vis Neurosci; 2019 Dec; 36():E012. PubMed ID: 31840629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes.
    Senseman DM
    Vis Neurosci; 1996; 13(5):963-77. PubMed ID: 8903037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.