These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29094293)
1. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Wiegmann L; Boës S; de Zélicourt D; Thamsen B; Schmid Daners M; Meboldt M; Kurtcuoglu V Ann Biomed Eng; 2018 Mar; 46(3):417-428. PubMed ID: 29094293 [TBL] [Abstract][Full Text] [Related]
2. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study. Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614 [TBL] [Abstract][Full Text] [Related]
3. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump. Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679 [TBL] [Abstract][Full Text] [Related]
4. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361 [TBL] [Abstract][Full Text] [Related]
6. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Wu J; Paden BE; Borovetz HS; Antaki JF Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736 [TBL] [Abstract][Full Text] [Related]
7. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C; Aka IB; Lazoglu I Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Su B; Chua LP; Lim TM; Zhou T Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393 [TBL] [Abstract][Full Text] [Related]
9. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device. Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631 [TBL] [Abstract][Full Text] [Related]
10. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603 [TBL] [Abstract][Full Text] [Related]
11. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Fang P; Du J; Yu S Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps. Mozafari S; Rezaienia MA; Paul GM; Rothman MT; Wen P; Korakianitis T ASAIO J; 2017; 63(1):53-59. PubMed ID: 28033202 [TBL] [Abstract][Full Text] [Related]
13. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation. Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836 [TBL] [Abstract][Full Text] [Related]
14. Numerical solution for blood flow in a centrifugal ventricular assist device. Wood HG; Anderson J; Allaire PE; McDaniel JC; Bearnson G Int J Artif Organs; 1999 Dec; 22(12):827-36. PubMed ID: 10654880 [TBL] [Abstract][Full Text] [Related]
15. The flow patterns within the impeller passages of a centrifugal blood pump model. Yu SC; Ng BT; Chan WK; Chua LP Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump. Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128 [TBL] [Abstract][Full Text] [Related]
18. CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance. Gil A; Navarro R; Quintero P; Mares A; Pérez M; Montero JA Biomech Model Mechanobiol; 2022 Aug; 21(4):1201-1215. PubMed ID: 35546646 [TBL] [Abstract][Full Text] [Related]
19. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump. Yang XC; Zhang Y; Gui XM; Hu SS Artif Organs; 2011 Oct; 35(10):948-55. PubMed ID: 21517911 [TBL] [Abstract][Full Text] [Related]
20. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps. Wang L; Yun Z; Tang X; Xiang C Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]