These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29094478)

  • 1. A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities.
    Ricaurte DE; Martínez-García E; Nyerges Á; Pál C; de Lorenzo V; Aparicio T
    Microb Biotechnol; 2018 Jan; 11(1):176-188. PubMed ID: 29094478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida.
    Aparicio T; de Lorenzo V; Martínez-García E
    Microb Biotechnol; 2019 Sep; 12(5):1076-1089. PubMed ID: 31237429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42.
    Aparicio T; Jensen SI; Nielsen AT; de Lorenzo V; Martínez-García E
    Biotechnol J; 2016 Oct; 11(10):1309-1319. PubMed ID: 27367544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy.
    Aparicio T; de Lorenzo V; Martínez-García E
    Methods Mol Biol; 2022; 2479():37-52. PubMed ID: 35583731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria.
    Aparicio T; de Lorenzo V; Martínez-García E
    Methods Mol Biol; 2020; 2075():383-398. PubMed ID: 31584177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombineering-Mediated Genome Editing in Burkholderiales Strains.
    Wang X; Liu J; Zheng W; Zhang Y; Bian X
    Methods Mol Biol; 2022; 2479():21-36. PubMed ID: 35583730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding
    Asin-Garcia E; Martin-Pascual M; Garcia-Morales L; van Kranenburg R; Martins Dos Santos VAP
    ACS Synth Biol; 2021 Oct; 10(10):2672-2688. PubMed ID: 34547891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering.
    Aparicio T; Nyerges A; Martínez-García E; de Lorenzo V
    iScience; 2020 Mar; 23(3):100946. PubMed ID: 32179472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.
    Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Reach of Recombineering to Environmental Bacteria.
    Borrero-de Acuña JM; Poblete-Castro I
    Trends Biotechnol; 2020 Jul; 38(7):684-685. PubMed ID: 32312593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of
    Dvořák P; Bayer EA; de Lorenzo V
    ACS Synth Biol; 2020 Oct; 9(10):2749-2764. PubMed ID: 32877604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bxb1 phage recombinase assists genome engineering in
    Voutev R; Mann RS
    Biotechniques; 2017 Jan; 62(1):37-38. PubMed ID: 28118814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas.
    Patinios C; Creutzburg SCA; Arifah AQ; Adiego-Pérez B; Gyimah EA; Ingham CJ; Kengen SWM; van der Oost J; Staals RHJ
    Nucleic Acids Res; 2021 Nov; 49(19):11392-11404. PubMed ID: 34614191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei.
    Xin Y; Guo T; Mu Y; Kong J
    FEMS Microbiol Lett; 2017 Dec; 364(24):. PubMed ID: 29145601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targetron-Assisted Delivery of Exogenous DNA Sequences into
    Velázquez E; Al-Ramahi Y; Tellechea-Luzardo J; Krasnogor N; de Lorenzo V
    ACS Synth Biol; 2021 Oct; 10(10):2552-2565. PubMed ID: 34601868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.