These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29094600)

  • 1. Friction of Droplets Sliding on Microstructured Superhydrophobic Surfaces.
    Qiao S; Li S; Li Q; Li B; Liu K; Feng XQ
    Langmuir; 2017 Nov; 33(47):13480-13489. PubMed ID: 29094600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces.
    Qiao S; Li Q; Feng XQ
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):25. PubMed ID: 29464416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction Coefficients for Droplets on Solids: The Liquid-Solid Amontons' Laws.
    McHale G; Gao N; Wells GG; Barrio-Zhang H; Ledesma-Aguilar R
    Langmuir; 2022 Apr; 38(14):4425-4433. PubMed ID: 35353534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding of water droplets on microstructured hydrophobic surfaces.
    Lv C; Yang C; Hao P; He F; Zheng Q
    Langmuir; 2010 Jun; 26(11):8704-8. PubMed ID: 20205409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding of water droplets on the superhydrophobic surface with ZnO nanorods.
    Sakai M; Kono H; Nakajima A; Zhang X; Sakai H; Abe M; Fujishima A
    Langmuir; 2009 Dec; 25(24):14182-6. PubMed ID: 19527040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces.
    Xu W; Choi CH
    Phys Rev Lett; 2012 Jul; 109(2):024504. PubMed ID: 23030167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the nature of the friction between nonstick droplets and solid substrates.
    Bormashenko E; Bormashenko Y; Oleg G
    Langmuir; 2010 Aug; 26(15):12479-82. PubMed ID: 20593794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H; Ruiz-Gutiérrez É; Armstrong S; McHale G; Wells GG; Ledesma-Aguilar R
    Langmuir; 2020 Dec; 36(49):15094-15101. PubMed ID: 33258609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.
    do Nascimento RM; Cottin-Bizonne C; Pirat C; Ramos SM
    Langmuir; 2016 Mar; 32(8):2005-9. PubMed ID: 26854562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drop Impact on Oblique Superhydrophobic Surfaces with Two-Tier Roughness.
    Zhang R; Hao P; He F
    Langmuir; 2017 Apr; 33(14):3556-3567. PubMed ID: 28326784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the Sliding Angle of Water Drops on Surfaces from Friction Force Measurements.
    Beitollahpoor M; Farzam M; Pesika NS
    Langmuir; 2022 Feb; 38(6):2132-2136. PubMed ID: 35104147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H; Chun JM; Sotelo J; Miljkovic N
    ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of drop volume and micropillar shape on the apparent contact angle of ordered microstructured surfaces.
    Afferrante L; Carbone G
    Soft Matter; 2014 Jun; 10(22):3906-14. PubMed ID: 24643633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces.
    Li H; Yan T; Fichthorn KA
    Langmuir; 2020 Aug; 36(33):9916-9925. PubMed ID: 32787051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meltwater Evolution during Defrosting on Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1415-1421. PubMed ID: 29220152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.