These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29094739)

  • 1. Microwave-assisted activation and modulator removal in zirconium MOFs for buffer-free CWA hydrolysis.
    Kalinovskyy Y; Cooper NJ; Main MJ; Holder SJ; Blight BA
    Dalton Trans; 2017 Nov; 46(45):15704-15709. PubMed ID: 29094739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts.
    Kiaei K; Nord MT; Chiu NC; Stylianou KC
    ACS Appl Mater Interfaces; 2022 May; 14(17):19747-19755. PubMed ID: 35445601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UiO-66-NH
    Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of UiO-66-NH
    Chen M; Tu Y; Wu S
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34066489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization.
    Kalaj M; Cohen SM
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13984-13989. PubMed ID: 32369673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Synthesis of Porous Composites MOF-Textile for the Protection against Chemical and Nuclear Hazards.
    Couzon N; Ferreira M; Duval S; El-Achari A; Campagne C; Loiseau T; Volkringer C
    ACS Appl Mater Interfaces; 2022 May; 14(18):21497-21508. PubMed ID: 35471817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detoxification of Chemical Warfare Agents Using a Zr
    Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK
    Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks.
    Ploskonka AM; DeCoste JB
    J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18437-18445. PubMed ID: 32202409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the defects of UiO-66 MOF for an improved catalytic detoxification of CWA simulant: methyl paraoxon.
    Balasubramanian S; Kulandaisamy AJ; Rayappan JBB
    RSC Adv; 2024 Oct; 14(43):31535-31548. PubMed ID: 39372052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66.
    Gibbons B; Bartlett EC; Cai M; Yang X; Johnson EM; Morris AJ
    Inorg Chem; 2021 Nov; 60(21):16378-16387. PubMed ID: 34672622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation.
    Kalaj M; Momeni MR; Bentz KC; Barcus KS; Palomba JM; Paesani F; Cohen SM
    Chem Commun (Camb); 2019 Mar; 55(24):3481-3484. PubMed ID: 30829360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs.
    Ghasempour H; Morsali A
    Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant.
    Li S; Zhang H; Wu G; Wu J; Hou H
    Dalton Trans; 2023 May; 52(20):6899-6905. PubMed ID: 37158285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.
    Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK
    Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation.
    Kalaj M; Palomba JM; Bentz KC; Cohen SM
    Chem Commun (Camb); 2019 May; 55(37):5367-5370. PubMed ID: 30994655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant.
    Wu G; Zhang B; Zhang H; Zhang X; Hu X; Meng X; Wu J; Hou H
    Inorg Chem; 2024 Jul; 63(27):12658-12666. PubMed ID: 38916863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks.
    Liao Y; Sheridan T; Liu J; Farha O; Hupp J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.
    Liang H; Yao A; Jiao X; Li C; Chen D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20396-20403. PubMed ID: 29806452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.