These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection. Kongsuphol P; Liu Y; Ramadan Q Biomed Microdevices; 2016 Oct; 18(5):93. PubMed ID: 27628061 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic platform enables live-cell imaging of signaling and transcription combined with multiplexed secretion measurements in the same single cells. Ramji R; Alexander AF; Muñoz-Rojas AR; Kellman LN; Miller-Jensen K Integr Biol (Camb); 2019 Apr; 11(4):142-153. PubMed ID: 31242304 [TBL] [Abstract][Full Text] [Related]
8. Insert-based microfluidics for 3D cell culture with analysis. Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154 [TBL] [Abstract][Full Text] [Related]
9. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Li X; Hu J; Easley CJ Lab Chip; 2018 Sep; 18(19):2926-2935. PubMed ID: 30112543 [TBL] [Abstract][Full Text] [Related]
11. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Han Q; Bradshaw EM; Nilsson B; Hafler DA; Love JC Lab Chip; 2010 Jun; 10(11):1391-400. PubMed ID: 20376398 [TBL] [Abstract][Full Text] [Related]
12. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling. Li X; Brooks JC; Hu J; Ford KI; Easley CJ Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542 [TBL] [Abstract][Full Text] [Related]
13. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems. Brooks JC; Judd RL; Easley CJ Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052 [TBL] [Abstract][Full Text] [Related]
14. Multiphase flow experiment and simulation for cells-on-a-chip devices. Zhang M; Zheng A; Zheng ZC; Wang MZ Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613 [TBL] [Abstract][Full Text] [Related]
15. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip. Bsoul A; Pan S; Cretu E; Stoeber B; Walus K Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Flow Cytometry for Single-Cell Protein Analysis. Wu M; Singh AK Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716 [TBL] [Abstract][Full Text] [Related]
18. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517 [TBL] [Abstract][Full Text] [Related]
19. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Banaeiyan AA; Theobald J; Paukštyte J; Wölfl S; Adiels CB; Goksör M Biofabrication; 2017 Feb; 9(1):015014. PubMed ID: 28155845 [TBL] [Abstract][Full Text] [Related]
20. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]