BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29094741)

  • 1. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices.
    Park S; Cho H; Kim J; Han KH
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33925874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
    Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y
    Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a fluidic circuit-based microcytometer for circulating tumor cell detection and enumeration.
    Guo J; Lei W; Ma X; Xue P; Chen Y; Kang Y
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):35-41. PubMed ID: 24048075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.
    Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device.
    Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.
    Zhang X; Zhu Z; Ni Z; Xiang N; Yi H
    Biomed Microdevices; 2017 Jun; 19(2):21. PubMed ID: 28367599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis.
    Khamenehfar A; Li PC
    Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A resettable dynamic microarray device.
    Iwai K; Tan WH; Ishihara H; Takeuchi S
    Biomed Microdevices; 2011 Dec; 13(6):1089-94. PubMed ID: 21800145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells.
    Hur SC; Che J; Di Carlo D
    Methods Mol Biol; 2017; 1634():65-79. PubMed ID: 28819841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.