BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29094741)

  • 61. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device.
    Li L; Liu W; Wang J; Tu Q; Liu R; Wang J
    Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device.
    Okano H; Konishi T; Suzuki T; Suzuki T; Ariyasu S; Aoki S; Abe R; Hayase M
    Biomed Microdevices; 2015; 17(3):9964. PubMed ID: 26002773
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells.
    Safaei TS; Mohamadi RM; Sargent EH; Kelley SO
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14165-9. PubMed ID: 25938818
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation.
    Lin MX; Hyun KA; Moon HS; Sim TS; Lee JG; Park JC; Lee SS; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):63-7. PubMed ID: 22784495
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 66. IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics.
    Srisa-Art M; Noblitt SD; Krummel AT; Henry CS
    Anal Chim Acta; 2018 Aug; 1021():95-102. PubMed ID: 29681289
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections.
    Qin Y; Yang X; Zhang J; Cao X
    Colloids Surf B Biointerfaces; 2017 Mar; 151():39-46. PubMed ID: 27940168
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Localized Electroporation With Dielectrophoretic Field Flow Fractionation: Toward Removal of Circulating Tumour Cells From Human Blood.
    Kinio S; Mills JK
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):802-809. PubMed ID: 29053456
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Multilayer Polymer-Film Inertial Microfluidic Device for High-Throughput Cell Concentration.
    Xiang N; Zhang R; Han Y; Ni Z
    Anal Chem; 2019 Apr; 91(8):5461-5468. PubMed ID: 30920789
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Microflow Cytometer Based on a Disposable Microfluidic Chip With Side Scatter and Fluorescence Detection Capability.
    Xun W; Feng J; Chang H
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):850-6. PubMed ID: 26415206
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.
    Tsao CW; Lee YP
    Sci Technol Adv Mater; 2016; 17(1):2-11. PubMed ID: 27877852
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A single-view field filter device for rare tumor cell filtration and enumeration.
    Quan Y; Chen K; Xiang N; Ni Z
    Electrophoresis; 2020 Dec; 41(23):2000-2006. PubMed ID: 32767389
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Centrifugal Filter Device for Detection of Rare Cells With Immuno-Binding.
    Chen CC; Chen YA; Yao DJ
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):864-9. PubMed ID: 26452287
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.