These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29094788)

  • 1. When global rule reversal meets local task switching: The neural mechanisms of coordinated behavioral adaptation to instructed multi-level demand changes.
    Shi Y; Wolfensteller U; Schubert T; Ruge H
    Hum Brain Mapp; 2018 Feb; 39(2):735-746. PubMed ID: 29094788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning.
    Ruge H; Wolfensteller U
    Neuroimage; 2016 Jan; 125():1-12. PubMed ID: 26471057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks supporting switching, hypothesis testing, and rule application.
    Liu Z; Braunlich K; Wehe HS; Seger CA
    Neuropsychologia; 2015 Oct; 77():19-34. PubMed ID: 26197092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult age differences in functional connectivity during executive control.
    Madden DJ; Costello MC; Dennis NA; Davis SW; Shepler AM; Spaniol J; Bucur B; Cabeza R
    Neuroimage; 2010 Aug; 52(2):643-57. PubMed ID: 20434565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient and Sustained Control Mechanisms Supporting Novel Instructed Behavior.
    Palenciano AF; González-García C; Arco JE; Ruz M
    Cereb Cortex; 2019 Aug; 29(9):3948-3960. PubMed ID: 30364950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance monitoring and behavioral adaptation during task switching: an fMRI study.
    von der Gablentz J; Tempelmann C; Münte TF; Heldmann M
    Neuroscience; 2015 Jan; 285():227-35. PubMed ID: 25446349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coactivation of cognitive control networks during task switching.
    Yin S; Deák G; Chen A
    Neuropsychology; 2018 Jan; 32(1):31-39. PubMed ID: 29239622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prefrontal dynamics underlying rapid instructed task learning reverse with practice.
    Cole MW; Bagic A; Kass R; Schneider W
    J Neurosci; 2010 Oct; 30(42):14245-54. PubMed ID: 20962245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring adolescent cognitive control in a combined interference switching task.
    Mennigen E; Rodehacke S; Müller KU; Ripke S; Goschke T; Smolka MN
    Neuropsychologia; 2014 Aug; 61():175-89. PubMed ID: 24971708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparatory Engagement of Cognitive Control Networks Increases Late in Childhood.
    Church JA; Bunge SA; Petersen SE; Schlaggar BL
    Cereb Cortex; 2017 Mar; 27(3):2139-2153. PubMed ID: 26972753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex Differences in Cognitive Flexibility and Resting Brain Networks in Middle-Aged Marmosets.
    LaClair M; Febo M; Nephew B; Gervais NJ; Poirier G; Workman K; Chumachenko S; Payne L; Moore MC; King JA; Lacreuse A
    eNeuro; 2019; 6(4):. PubMed ID: 31262949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming residual interference in mental set switching: neural correlates and developmental trajectory.
    Witt ST; Stevens MC
    Neuroimage; 2012 Sep; 62(3):2055-64. PubMed ID: 22584223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to Synchronize: Midfrontal Theta Dynamics during Rule Switching.
    Verbeke P; Ergo K; De Loof E; Verguts T
    J Neurosci; 2021 Feb; 41(7):1516-1528. PubMed ID: 33310756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.
    Nashiro K; Qin S; O'Connell MA; Basak C
    Neuroimage; 2018 May; 172():146-161. PubMed ID: 29414492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular segregation of task-dependent brain networks contributes to the development of executive function in children.
    Wang C; Hu Y; Weng J; Chen F; Liu H
    Neuroimage; 2020 Feb; 206():116334. PubMed ID: 31704295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in large-scale functional network organization during autobiographical memory retrieval.
    Inman CS; James GA; Vytal K; Hamann S
    Neuropsychologia; 2018 Feb; 110():208-224. PubMed ID: 28951163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning.
    Chase HW; Swainson R; Durham L; Benham L; Cools R
    J Cogn Neurosci; 2011 Apr; 23(4):936-46. PubMed ID: 20146610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.