These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29094949)

  • 41. Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film.
    Salomon A; Gordon RJ; Prior Y; Seideman T; Sukharev M
    Phys Rev Lett; 2012 Aug; 109(7):073002. PubMed ID: 23006365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling.
    Niu Y; Xu H; Wei H
    Phys Rev Lett; 2022 Apr; 128(16):167402. PubMed ID: 35522488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Compounding Plasmon⁻Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting.
    Song T; Chen Z; Zhang W; Lin L; Bao Y; Wu L; Zhou ZK
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
    Wall F; Mey O; Schneider LM; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8303. PubMed ID: 32427933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons.
    Eizner E; Avayu O; Ditcovski R; Ellenbogen T
    Nano Lett; 2015 Sep; 15(9):6215-21. PubMed ID: 26258257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy.
    Yankovich AB; Munkhbat B; Baranov DG; Cuadra J; Olsén E; Lourenço-Martins H; Tizei LHG; Kociak M; Olsson E; Shegai T
    Nano Lett; 2019 Nov; 19(11):8171-8181. PubMed ID: 31639311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations.
    Memmi H; Benson O; Sadofev S; Kalusniak S
    Phys Rev Lett; 2017 Mar; 118(12):126802. PubMed ID: 28388189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of
    Wang CY; Sang Y; Yang X; Raja SS; Cheng CW; Li H; Ding Y; Sun S; Ahn H; Shih CK; Gwo S; Shi J
    Nano Lett; 2021 Jan; 21(1):605-611. PubMed ID: 33350840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Double Rabi Splitting in a Strongly Coupled System of Core-Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores.
    Melnikau D; Govyadinov AA; Sánchez-Iglesias A; Grzelczak M; Nabiev IR; Liz-Marzán LM; Rakovich YP
    J Phys Chem Lett; 2019 Oct; 10(20):6137-6143. PubMed ID: 31557038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photon echo in exciton-plasmon nanomaterials: A time-dependent signature of strong coupling.
    Blake A; Sukharev M
    J Chem Phys; 2017 Feb; 146(8):084704. PubMed ID: 28249447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong exciton-plasmon coupling in dye-doped film on a planar hyperbolic metamaterial.
    Tanyi EK; Hong N; Sawyer T; Van Schenck JDB; Giesbers G; Ostroverkhova O; Cheng LJ
    Opt Lett; 2020 Dec; 45(24):6736-6739. PubMed ID: 33325884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling.
    Fauché P; Gebhardt C; Sukharev M; Vallée RAL
    Sci Rep; 2017 Jun; 7(1):4107. PubMed ID: 28642582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles.
    Guo J; Wu F; Song G; Huang Y; Jiao R; Yu L
    Nanoscale; 2021 Oct; 13(37):15812-15818. PubMed ID: 34528651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.
    Wang H; Toma A; Wang HY; Bozzola A; Miele E; Haddadpour A; Veronis G; De Angelis F; Wang L; Chen QD; Xu HL; Sun HB; Zaccaria RP
    Nanoscale; 2016 Jul; 8(27):13445-53. PubMed ID: 27350590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS
    Lawless J; Hrelescu C; Elliott C; Peters L; McEvoy N; Bradley AL
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46406-46415. PubMed ID: 32960560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.