BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29095158)

  • 1. Biochemical and structural studies of mutants indicate concerted movement of the dimer interface and ligand-binding region of Mycobacterium tuberculosis pantothenate kinase.
    Paul A; Kumar P; Surolia A; Vijayan M
    Acta Crystallogr F Struct Biol Commun; 2017 Nov; 73(Pt 11):635-643. PubMed ID: 29095158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis pantothenate kinase: possible changes in location of ligands during enzyme action.
    Chetnani B; Das S; Kumar P; Surolia A; Vijayan M
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):312-25. PubMed ID: 19307712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase.
    Björkelid C; Bergfors T; Raichurkar AK; Mukherjee K; Malolanarasimhan K; Bandodkar B; Jones TA
    J Biol Chem; 2013 Jun; 288(25):18260-70. PubMed ID: 23661699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M. tuberculosis pantothenate kinase: dual substrate specificity and unusual changes in ligand locations.
    Chetnani B; Kumar P; Surolia A; Vijayan M
    J Mol Biol; 2010 Jul; 400(2):171-85. PubMed ID: 20451532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and conformation of pantothenate and its derivatives in Mycobacterium tuberculosis pantothenate kinase: insights into enzyme action.
    Chetnani B; Kumar P; Abhinav KV; Chhibber M; Surolia A; Vijayan M
    Acta Crystallogr D Biol Crystallogr; 2011 Sep; 67(Pt 9):774-83. PubMed ID: 21904030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A.
    Yun M; Park CG; Kim JY; Rock CO; Jackowski S; Park HW
    J Biol Chem; 2000 Sep; 275(36):28093-9. PubMed ID: 10862768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of pantothenate kinase from Mycobacterium tuberculosis.
    Das S; Kumar P; Bhor V; Surolia A; Vijayan M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):65-7. PubMed ID: 16508093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli.
    Rock CO; Park HW; Jackowski S
    J Bacteriol; 2003 Jun; 185(11):3410-5. PubMed ID: 12754240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis.
    Kumar P; Chhibber M; Surolia A
    Biochem Biophys Res Commun; 2007 Oct; 361(4):903-9. PubMed ID: 17679145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariance and variability in bacterial PanK: a study based on the crystal structure of Mycobacterium tuberculosis PanK.
    Das S; Kumar P; Bhor V; Surolia A; Vijayan M
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):628-38. PubMed ID: 16699190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essentiality and functional analysis of type I and type III pantothenate kinases of Mycobacterium tuberculosis.
    Awasthy D; Ambady A; Bhat J; Sheikh G; Ravishankar S; Subbulakshmi V; Mukherjee K; Sambandamurthy V; Sharma U
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2691-2701. PubMed ID: 20576686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase.
    Awuah E; Ma E; Hoegl A; Vong K; Habib E; Auclair K
    Bioorg Med Chem; 2014 Jun; 22(12):3083-90. PubMed ID: 24814884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and regulation of pantothenate kinase from Escherichia coli.
    Song WJ; Jackowski S
    J Biol Chem; 1994 Oct; 269(43):27051-8. PubMed ID: 7929447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant coenzyme A biosynthesis: characterization of two pantothenate kinases from Arabidopsis.
    Tilton GB; Wedemeyer WJ; Browse J; Ohlrogge J
    Plant Mol Biol; 2006 Jul; 61(4-5):629-42. PubMed ID: 16897480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate recognition by β-ketoacyl-ACP synthases.
    Borgaro JG; Chang A; Machutta CA; Zhang X; Tonge PJ
    Biochemistry; 2011 Dec; 50(49):10678-86. PubMed ID: 22017312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and preliminary X-ray analysis of NAD kinase from Mycobacterium tuberculosis H37Rv.
    Mori S; Kawai S; Mikami B; Murata K
    Acta Crystallogr D Biol Crystallogr; 2001 Sep; 57(Pt 9):1319-20. PubMed ID: 11526331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the temperature-sensitive mutation of Escherichia coli pantothenate kinase reveals YbjN as a possible protein stabilizer.
    Chen X; Shen D; Zhou B
    Biochem Biophys Res Commun; 2006 Jun; 345(2):834-42. PubMed ID: 16701556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli.
    Vallari DS; Rock CO
    J Bacteriol; 1987 Dec; 169(12):5795-800. PubMed ID: 2824448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli.
    Vallari DS; Jackowski S
    J Bacteriol; 1988 Sep; 170(9):3961-6. PubMed ID: 2842294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-induced asymmetry and channel closure revealed by the apoenzyme structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase.
    Morris VK; Izard T
    Protein Sci; 2004 Sep; 13(9):2547-52. PubMed ID: 15322293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.