These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29095618)

  • 1. The Bend+Libration Combination Band Is an Intrinsic, Collective, and Strongly Solute-Dependent Reporter on the Hydrogen Bonding Network of Liquid Water.
    Verma PK; Kundu A; Puretz MS; Dhoonmoon C; Chegwidden OS; Londergan CH; Cho M
    J Phys Chem B; 2018 Mar; 122(9):2587-2599. PubMed ID: 29095618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delocalization and stretch-bend mixing of the HOH bend in liquid water.
    Carpenter WB; Fournier JA; Biswas R; Voth GA; Tokmakoff A
    J Chem Phys; 2017 Aug; 147(8):084503. PubMed ID: 28863511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Vibrational Spectroscopy of HDO in Osmolyte-Water Solutions.
    Lee H; Choi JH; Verma PK; Cho M
    J Phys Chem A; 2016 Jul; 120(29):5874-86. PubMed ID: 27341918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.
    Tong Y; Kampfrath T; Campen RK
    Phys Chem Chem Phys; 2016 Jul; 18(27):18424-30. PubMed ID: 27339861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotope effects in liquid water by infrared spectroscopy. V. A sea of OH4 of C2v symmetry.
    Max JJ; Chapados C
    J Chem Phys; 2011 Apr; 134(16):164502. PubMed ID: 21528968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts.
    Dagade DH; Barge SS
    Chemphyschem; 2016 Mar; 17(6):902-12. PubMed ID: 26749515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2011 Mar; 115(11):2563-73. PubMed ID: 21355600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.
    Choi JH; Kim H; Kim S; Lim S; Chon B; Cho M
    J Chem Phys; 2015 May; 142(20):204102. PubMed ID: 26026429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water dynamics--the effects of ions and nanoconfinement.
    Park S; Moilanen DE; Fayer MD
    J Phys Chem B; 2008 May; 112(17):5279-90. PubMed ID: 18370431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation Dynamics of Trimethylamine N-Oxide in Aqueous Solution Probed by Terahertz Spectroscopy.
    Knake L; Schwaab G; Kartaschew K; Havenith M
    J Phys Chem B; 2015 Oct; 119(43):13842-51. PubMed ID: 26214376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IR spectral assignments for the hydrated excess proton in liquid water.
    Biswas R; Carpenter W; Fournier JA; Voth GA; Tokmakoff A
    J Chem Phys; 2017 Apr; 146(15):154507. PubMed ID: 28433032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy.
    De Marco L; Fournier JA; Thämer M; Carpenter W; Tokmakoff A
    J Chem Phys; 2016 Sep; 145(9):094501. PubMed ID: 27608998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently bound azido groups are very specific water sensors, even in hydrogen-bonding environments.
    Wolfshorndl MP; Baskin R; Dhawan I; Londergan CH
    J Phys Chem B; 2012 Jan; 116(3):1172-9. PubMed ID: 22176031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pump-Probe Measurements.
    Shattuck J; Shah P; Erramilli S; Ziegler LD
    J Phys Chem B; 2016; 120(40):10569-10580. PubMed ID: 27668810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.
    Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K
    Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic Liquid versus Li(+) Aqueous Solutions: Water Dynamics near Bistriflimide Anions.
    Giammanco CH; Kramer PL; Fayer MD
    J Phys Chem B; 2016 Sep; 120(37):9997-10009. PubMed ID: 27580210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water: a responsive small molecule.
    Shultz MJ; Vu TH; Meyer B; Bisson P
    Acc Chem Res; 2012 Jan; 45(1):15-22. PubMed ID: 22136280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.