BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29095816)

  • 1. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales.
    Teng X; Tian X; Rowland J; Poeppel D
    PLoS Biol; 2017 Nov; 15(11):e2000812. PubMed ID: 29095816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theta and Gamma Bands Encode Acoustic Dynamics over Wide-Ranging Timescales.
    Teng X; Poeppel D
    Cereb Cortex; 2020 Apr; 30(4):2600-2614. PubMed ID: 31761952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.
    Teng X; Tian X; Doelling K; Poeppel D
    Eur J Neurosci; 2018 Oct; 48(8):2770-2782. PubMed ID: 29044763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.
    Potes C; Brunner P; Gunduz A; Knight RT; Schalk G
    Neuroimage; 2014 Aug; 97():188-95. PubMed ID: 24768933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual temporal encoding mechanisms in human auditory cortex: Evidence from MEG and EEG.
    Tang H; Crain S; Johnson BW
    Neuroimage; 2016 Mar; 128():32-43. PubMed ID: 26763154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theta, beta and gamma rate modulations in the developing auditory system.
    Vanvooren S; Hofmann M; Poelmans H; Ghesquière P; Wouters J
    Hear Res; 2015 Sep; 327():153-62. PubMed ID: 26117409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment.
    Cantiani C; Ortiz-Mantilla S; Riva V; Piazza C; Bettoni R; Musacchia G; Molteni M; Marino C; Benasich AA
    Neuroimage Clin; 2019; 22():101778. PubMed ID: 30901712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.
    Molloy K; Griffiths TD; Chait M; Lavie N
    J Neurosci; 2015 Dec; 35(49):16046-54. PubMed ID: 26658858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 40-Hz oscillations underlying perceptual binding in young and older adults.
    Ross B; Fujioka T
    Psychophysiology; 2016 Jul; 53(7):974-90. PubMed ID: 27080577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Alterations of Auditory Gamma Oscillatory Responses Between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia.
    Tada M; Nagai T; Kirihara K; Koike S; Suga M; Araki T; Kobayashi T; Kasai K
    Cereb Cortex; 2016 Mar; 26(3):1027-1035. PubMed ID: 25452567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of auditory gamma-band responses using transcranial electrical stimulation.
    Jones KT; Johnson EL; Tauxe ZS; Rojas DC
    J Neurophysiol; 2020 Jun; 123(6):2504-2514. PubMed ID: 32459551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age.
    Ortiz-Mantilla S; Hämäläinen JA; Realpe-Bonilla T; Benasich AA
    J Neurosci; 2016 Nov; 36(48):12095-12105. PubMed ID: 27903720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
    Gilley PM; Uhler K; Watson K; Yoshinaga-Itano C
    BMC Neurosci; 2017 Mar; 18(1):34. PubMed ID: 28330464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady state responses to temporally congruent and incongruent auditory and vibrotactile amplitude modulated stimulation.
    Budd TW; Timora JR
    Int J Psychophysiol; 2013 Sep; 89(3):419-32. PubMed ID: 23769951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of auditory phase-locked activity for music sounds.
    Shahin AJ; Trainor LJ; Roberts LE; Backer KC; Miller LM
    J Neurophysiol; 2010 Jan; 103(1):218-29. PubMed ID: 19864443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli.
    Ten Oever S; Schroeder CE; Poeppel D; van Atteveldt N; Mehta AD; Mégevand P; Groppe DM; Zion-Golumbic E
    J Neurosci; 2017 May; 37(19):4903-4912. PubMed ID: 28411273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural correlates of auditory distraction revealed in θ-band EEG.
    Ponjavic-Conte KD; Dowdall JR; Hambrook DA; Luczak A; Tata MS
    Neuroreport; 2012 Mar; 23(4):240-5. PubMed ID: 22314684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.
    Kayser SJ; Ince RA; Gross J; Kayser C
    J Neurosci; 2015 Nov; 35(44):14691-701. PubMed ID: 26538641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semantic and acoustic analysis of speech by functional networks with distinct time scales.
    Deng S; Srinivasan R
    Brain Res; 2010 Jul; 1346():132-44. PubMed ID: 20580635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.