BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 29096242)

  • 21. Microglia: key elements in neural development, plasticity, and pathology.
    Eyo UB; Dailey ME
    J Neuroimmune Pharmacol; 2013 Jun; 8(3):494-509. PubMed ID: 23354784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The diverse actions of astrocytes during synaptic development.
    Bosworth AP; Allen NJ
    Curr Opin Neurobiol; 2017 Dec; 47():38-43. PubMed ID: 28938161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of microglia-mediated synapse turnover and synaptogenesis.
    Ball JB; Green-Fulgham SM; Watkins LR
    Prog Neurobiol; 2022 Nov; 218():102336. PubMed ID: 35940391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microglia: Key players in neurodevelopment and neuronal plasticity.
    Sominsky L; De Luca S; Spencer SJ
    Int J Biochem Cell Biol; 2018 Jan; 94():56-60. PubMed ID: 29197626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential contributions of microglial and neuronal IKKβ to synaptic plasticity and associative learning in alert behaving mice.
    Kyrargyri V; Vega-Flores G; Gruart A; Delgado-García JM; Probert L
    Glia; 2015 Apr; 63(4):549-66. PubMed ID: 25297800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resting microglial motility is independent of synaptic plasticity in mammalian brain.
    Wu LJ; Zhuo M
    J Neurophysiol; 2008 Apr; 99(4):2026-32. PubMed ID: 18256162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microglia-dependent remodeling of neuronal circuits.
    Guedes JR; Ferreira PA; Costa JM; Cardoso AL; Peça J
    J Neurochem; 2022 Oct; 163(2):74-93. PubMed ID: 35950924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights on the role of microglia in synaptic pruning in health and disease.
    Hong S; Dissing-Olesen L; Stevens B
    Curr Opin Neurobiol; 2016 Feb; 36():128-34. PubMed ID: 26745839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual functions of microglia in the formation and refinement of neural circuits during development.
    Konishi H; Kiyama H; Ueno M
    Int J Dev Neurosci; 2019 Oct; 77():18-25. PubMed ID: 30292872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X4 and A1 receptors.
    George J; Cunha RA; Mulle C; Amédée T
    Eur J Neurosci; 2016 May; 43(10):1366-78. PubMed ID: 27199162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury.
    Liu Y; Zhou LJ; Wang J; Li D; Ren WJ; Peng J; Wei X; Xu T; Xin WJ; Pang RP; Li YY; Qin ZH; Murugan M; Mattson MP; Wu LJ; Liu XG
    J Neurosci; 2017 Jan; 37(4):871-881. PubMed ID: 28123022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects.
    Kim HJ; Cho MH; Shim WH; Kim JK; Jeon EY; Kim DH; Yoon SY
    Mol Psychiatry; 2017 Nov; 22(11):1576-1584. PubMed ID: 27400854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity.
    Frank CL; Tsai LH
    Neuron; 2009 May; 62(3):312-26. PubMed ID: 19447088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microglia Activation and Schizophrenia: Lessons From the Effects of Minocycline on Postnatal Neurogenesis, Neuronal Survival and Synaptic Pruning.
    Inta D; Lang UE; Borgwardt S; Meyer-Lindenberg A; Gass P
    Schizophr Bull; 2017 May; 43(3):493-496. PubMed ID: 27352782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microglial TNF-α Suppresses Cocaine-Induced Plasticity and Behavioral Sensitization.
    Lewitus GM; Konefal SC; Greenhalgh AD; Pribiag H; Augereau K; Stellwagen D
    Neuron; 2016 May; 90(3):483-91. PubMed ID: 27112496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement.
    Morini R; Bizzotto M; Perrucci F; Filipello F; Matteoli M
    Front Immunol; 2021; 12():640937. PubMed ID: 33708226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function.
    Mastellos DC
    Exp Neurol; 2014 Nov; 261():469-74. PubMed ID: 24975369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function.
    Ferro A; Auguste YSS; Cheadle L
    Front Immunol; 2021; 12():703527. PubMed ID: 34276699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain.
    Levin SG; Godukhin OV
    Biochemistry (Mosc); 2017 Mar; 82(3):264-274. PubMed ID: 28320267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The brain's extracellular matrix and its role in synaptic plasticity.
    Frischknecht R; Gundelfinger ED
    Adv Exp Med Biol; 2012; 970():153-71. PubMed ID: 22351055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.