These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 29096358)
1. A highly sensitive VEGF Da H; Liu H; Zheng Y; Yuan R; Chai Y Biosens Bioelectron; 2018 Mar; 101():213-218. PubMed ID: 29096358 [TBL] [Abstract][Full Text] [Related]
2. Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C Liu YL; Da HM; Chai YQ; Yuan R; Liu HY Mikrochim Acta; 2019 Apr; 186(5):275. PubMed ID: 30969367 [TBL] [Abstract][Full Text] [Related]
3. ZnO-reduced graphene oxide composite based photoelectrochemical aptasensor for sensitive Cd(II) detection with methylene blue as sensitizer. Niu Y; Xie H; Luo G; Zhuang Y; Wu X; Li G; Sun W Anal Chim Acta; 2020 Jun; 1118():1-8. PubMed ID: 32418599 [TBL] [Abstract][Full Text] [Related]
4. Ti Liu Y; Zeng H; Chai Y; Yuan R; Liu H Chem Commun (Camb); 2019 Nov; 55(91):13729-13732. PubMed ID: 31661085 [TBL] [Abstract][Full Text] [Related]
5. A highly sensitive photoelectrochemical VEGF Da H; Liu Y; Li M; Yuan R; Liu H; Chai Y Chem Commun (Camb); 2019 Jul; 55(56):8076-8078. PubMed ID: 31225560 [TBL] [Abstract][Full Text] [Related]
6. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification. Xu N; Hou T; Li F Analyst; 2019 Jun; 144(12):3800-3806. PubMed ID: 31116196 [TBL] [Abstract][Full Text] [Related]
7. Simple "signal-on" photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Zhang B; Lu Y; Yang C; Guo Q; Nie G Biosens Bioelectron; 2019 Jun; 134():42-48. PubMed ID: 30954925 [TBL] [Abstract][Full Text] [Related]
8. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification. Zhang H; Li M; Li C; Guo Z; Dong H; Wu P; Cai C Biosens Bioelectron; 2015 Dec; 74():98-103. PubMed ID: 26120816 [TBL] [Abstract][Full Text] [Related]
9. Facile fabrication of an aptasensor for thrombin based on graphitic carbon nitride/TiO2 with high visible-light photoelectrochemical activity. Fan D; Guo C; Ma H; Zhao D; Li Y; Wu D; Wei Q Biosens Bioelectron; 2016 Jan; 75():116-22. PubMed ID: 26301999 [TBL] [Abstract][Full Text] [Related]
10. Reduced graphene oxide/BiFeO Zhou Q; Lin Y; Zhang K; Li M; Tang D Biosens Bioelectron; 2018 Mar; 101():146-152. PubMed ID: 29065339 [TBL] [Abstract][Full Text] [Related]
11. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Zhang X; Chi KN; Li DL; Deng Y; Ma YC; Xu QQ; Hu R; Yang YH Biosens Bioelectron; 2019 Mar; 129():64-71. PubMed ID: 30684856 [TBL] [Abstract][Full Text] [Related]
12. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on "signal off" and "signal on" strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Shamsipur M; Farzin L; Amouzadeh Tabrizi M; Molaabasi F Biosens Bioelectron; 2015 Dec; 74():369-75. PubMed ID: 26162327 [TBL] [Abstract][Full Text] [Related]
14. Porous organic polymers assisted aptamer signal amplification for enhanced photoeletrochemical detection of MUC1. Zhao J; Chen L; Liu F; Liu Y; Ji J; Chen G; Yang G; Dong X; Qu LL Anal Chim Acta; 2024 Jul; 1312():342762. PubMed ID: 38834277 [TBL] [Abstract][Full Text] [Related]
15. 2D MOF-Based Photoelectrochemical Aptasensor for SARS-CoV-2 Spike Glycoprotein Detection. Jiang ZW; Zhao TT; Li CM; Li YF; Huang CZ ACS Appl Mater Interfaces; 2021 Oct; 13(42):49754-49761. PubMed ID: 34657424 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Dehghani S; Nosrati R; Yousefi M; Nezami A; Soltani F; Taghdisi SM; Abnous K; Alibolandi M; Ramezani M Biosens Bioelectron; 2018 Jul; 110():23-37. PubMed ID: 29579646 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Miao X; Li Z; Zhu A; Feng Z; Tian J; Peng X Biosens Bioelectron; 2016 Sep; 83():39-44. PubMed ID: 27101533 [TBL] [Abstract][Full Text] [Related]
18. Truly Immobilization-Free Diffusivity-Mediated Photoelectrochemical Biosensing Strategy for Facile and Highly Sensitive MicroRNA Assay. Hou T; Xu N; Wang W; Ge L; Li F Anal Chem; 2018 Aug; 90(15):9591-9597. PubMed ID: 29991254 [TBL] [Abstract][Full Text] [Related]
19. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Cui L; Lu M; Li Y; Tang B; Zhang CY Biosens Bioelectron; 2018 Apr; 102():87-93. PubMed ID: 29127900 [TBL] [Abstract][Full Text] [Related]
20. "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. Zang Y; Lei J; Hao Q; Ju H ACS Appl Mater Interfaces; 2014 Sep; 6(18):15991-7. PubMed ID: 25170538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]