These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29096493)

  • 1. Local-metrics error-based Shepard interpolation as surrogate for highly non-linear material models in high dimensions.
    Lorenzi JM; Stecher T; Reuter K; Matera S
    J Chem Phys; 2017 Oct; 147(16):164106. PubMed ID: 29096493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A local interpolation scheme using no derivatives in potential sampling: application to O(1D) + H2 system.
    Ishida T; Schatz GC
    J Comput Chem; 2003 Jul; 24(9):1077-86. PubMed ID: 12759907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.
    D'Arcy JH; Kolmann SJ; Jordan MJ
    J Chem Phys; 2015 Aug; 143(7):074311. PubMed ID: 26298138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Interpolation of Computationally Expensive Posterior Densities With Variable Parameter Costs.
    Bliznyuk N; Ruppert D; Shoemaker CA
    J Comput Graph Stat; 2011; 20(3):636-655. PubMed ID: 29861615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of linear interpolation models for iterative CT reconstruction.
    Hahn K; Schöndube H; Stierstorfer K; Hornegger J; Noo F
    Med Phys; 2016 Dec; 43(12):6455. PubMed ID: 27908185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image interpolation via regularized local linear regression.
    Liu X; Zhao D; Xiong R; Ma S; Gao W; Sun H
    IEEE Trans Image Process; 2011 Dec; 20(12):3455-69. PubMed ID: 21571611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locally optimized coordinates in modified Shepard interpolation.
    Evenhuis CR; Collins MA
    J Phys Chem A; 2009 Apr; 113(16):3979-87. PubMed ID: 19284774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.
    Evenhuis CR; Manthe U
    J Chem Phys; 2008 Jul; 129(2):024104. PubMed ID: 18624513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Piecewise Linear Function Approximation for GPU-Based Applications.
    Berjon D; Gallego G; Cuevas C; Moran F; Garcia N
    IEEE Trans Cybern; 2016 Nov; 46(11):2584-2595. PubMed ID: 26462251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modelling of heterogeneous catalytic systems.
    Stamatakis M
    J Phys Condens Matter; 2015 Jan; 27(1):013001. PubMed ID: 25393371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach.
    Döpking S; Plaisance CP; Strobusch D; Reuter K; Scheurer C; Matera S
    J Chem Phys; 2018 Jan; 148(3):034102. PubMed ID: 29352783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression.
    Alborzpour JP; Tew DP; Habershon S
    J Chem Phys; 2016 Nov; 145(17):174112. PubMed ID: 27825241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surrogate articular contact models for computationally efficient multibody dynamic simulations.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    Med Eng Phys; 2010 Jul; 32(6):584-94. PubMed ID: 20236853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis.
    Hoffmann MJ; Engelmann F; Matera S
    J Chem Phys; 2017 Jan; 146(4):044118. PubMed ID: 28147552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Hessian update formulae to construct modified Shepard interpolated potential energy surfaces: application to vibrating surface atoms.
    Frankcombe TJ
    J Chem Phys; 2014 Mar; 140(11):114108. PubMed ID: 24655173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.
    Chatterjee A; Voter AF
    J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies.
    Hoffmann MJ; Bligaard T
    J Chem Theory Comput; 2018 Mar; 14(3):1583-1593. PubMed ID: 29357239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.