BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 29096754)

  • 1. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria.
    Tajbakhsh M; Karimi A; Fallah F; Akhavan MM
    Cell Mol Biol (Noisy-le-grand); 2017 Oct; 63(10):20-32. PubMed ID: 29096754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications.
    Papagianni M
    Biotechnol Adv; 2003 Sep; 21(6):465-99. PubMed ID: 14499150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.
    Münch D; Sahl HG
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3062-71. PubMed ID: 25934055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidermin and gallidermin: Staphylococcal lantibiotics.
    Götz F; Perconti S; Popella P; Werner R; Schlag M
    Int J Med Microbiol; 2014 Jan; 304(1):63-71. PubMed ID: 24119540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defence against antimicrobial peptides: different strategies in Firmicutes.
    Revilla-Guarinos A; Gebhard S; Mascher T; Zúñiga M
    Environ Microbiol; 2014 May; 16(5):1225-37. PubMed ID: 24548478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomally synthesized antibacterial peptides in Gram positive bacteria.
    Diep DB; Nes IF
    Curr Drug Targets; 2002 Apr; 3(2):107-22. PubMed ID: 11958295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coevolution of Resistance Against Antimicrobial Peptides.
    Baindara P; Ghosh AK; Mandal SM
    Microb Drug Resist; 2020 Aug; 26(8):880-899. PubMed ID: 32119634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids.
    Chongsiriwatana NP; Lin JS; Kapoor R; Wetzler M; Rea JAC; Didwania MK; Contag CH; Barron AE
    Sci Rep; 2017 Dec; 7(1):16718. PubMed ID: 29196622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G; Maisetta G; Esin S
    Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifaceted ABC transporters associated to microcin and bacteriocin export.
    Beis K; Rebuffat S
    Res Microbiol; 2019; 170(8):399-406. PubMed ID: 31401108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-conjugated antimicrobial peptide leucocin a displays high binding to pathogenic gram-positive bacteria.
    Etayash H; Norman L; Thundat T; Stiles M; Kaur K
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1131-8. PubMed ID: 24359454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pediocin-Like Antimicrobial Peptides of Bacteria.
    Balandin SV; Sheremeteva EV; Ovchinnikova TV
    Biochemistry (Mosc); 2019 May; 84(5):464-478. PubMed ID: 31234762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus n.v. Er 317/402 strain Narine.
    Mkrtchyan H; Gibbons S; Heidelberger S; Zloh M; Limaki HK
    Int J Antimicrob Agents; 2010 Mar; 35(3):255-60. PubMed ID: 20045288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.