These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 29096874)

  • 1. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical learning of target and distractor spatial probability shape a common attentional priority computation.
    Ferrante O; Chelazzi L; Santandrea E
    Cortex; 2023 Dec; 169():95-117. PubMed ID: 37866062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical learning of target location and distractor location rely on different mechanisms during visual search.
    Zhou X; Hao Y; Xu S; Zhang Q
    Atten Percept Psychophys; 2023 Feb; 85(2):342-365. PubMed ID: 36513850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation.
    Failing M; Wang B; Theeuwes J
    Atten Percept Psychophys; 2019 Jul; 81(5):1405-1414. PubMed ID: 30868474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical regularities modulate attentional capture independent of search strategy.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 Oct; 80(7):1763-1774. PubMed ID: 29968080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proactively location-based suppression elicited by statistical learning.
    Kong S; Li X; Wang B; Theeuwes J
    PLoS One; 2020; 15(6):e0233544. PubMed ID: 32479531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical regularities modulate attentional capture.
    Wang B; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):13-17. PubMed ID: 29309194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability cueing of singleton-distractor locations in visual search: Priority-map- versus dimension-based inhibition?
    Zhang B; Allenmark F; Liesefeld HR; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1146-1163. PubMed ID: 31144860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No reliable effect of task-irrelevant cross-modal statistical regularities on distractor suppression.
    Jagini KK; Sunny MM
    Cortex; 2023 Apr; 161():77-92. PubMed ID: 36913824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distractors less salient than targets capture attention rather than producing non-spatial filtering costs.
    Koch AI; Müller HJ; Zehetleitner M
    Acta Psychol (Amst); 2013 Sep; 144(1):61-72. PubMed ID: 23747508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity and persistence of statistical learning in distractor suppression.
    Britton MK; Anderson BA
    J Exp Psychol Hum Percept Perform; 2020 Mar; 46(3):324-334. PubMed ID: 31886698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Guided Distractor Suppression during Visual Search.
    Feldmann-Wüstefeld T; Weinberger M; Awh E
    J Neurosci; 2021 Apr; 41(14):3180-3191. PubMed ID: 33653697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal population correlates of target selection and distractor filtering.
    Astrand E; Wardak C; Ben Hamed S
    Neuroimage; 2020 Apr; 209():116517. PubMed ID: 31923605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A salient and task-irrelevant collinear structure hurts visual search.
    Tseng CH; Jingling L
    PLoS One; 2015; 10(4):e0124190. PubMed ID: 25909986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical Learning of Distractor Suppression Downregulates Prestimulus Neural Excitability in Early Visual Cortex.
    Ferrante O; Zhigalov A; Hickey C; Jensen O
    J Neurosci; 2023 Mar; 43(12):2190-2198. PubMed ID: 36801825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.