BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29096983)

  • 1. Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: A subject-specific computational modelling study.
    Lloyd RA; Fletcher DF; Clarke EC; Bilston LE
    J Biomech; 2017 Dec; 65():185-193. PubMed ID: 29096983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained high-pressure in the spinal subarachnoid space while arterial expansion is low may be linked to syrinx development.
    Clarke EC; Fletcher DF; Bilston LE
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):457-467. PubMed ID: 27712091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the pathophysiology of syringomyelia.
    Heiss JD; Patronas N; DeVroom HL; Shawker T; Ennis R; Kammerer W; Eidsath A; Talbot T; Morris J; Eskioglu E; Oldfield EH
    J Neurosurg; 1999 Oct; 91(4):553-62. PubMed ID: 10507374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of variation in the arterial pulse waveform on perivascular flow.
    Lloyd RA; Stoodley MA; Fletcher DF; Bilston LE
    J Biomech; 2019 Jun; 90():65-70. PubMed ID: 31047694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia.
    Clarke EC; Fletcher DF; Stoodley MA; Bilston LE
    J Biomech; 2013 Jul; 46(11):1801-9. PubMed ID: 23769174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decompression of the spinal subarachnoid space as a solution for syringomyelia without Chiari malformation.
    Lee JH; Chung CK; Kim HJ
    Spinal Cord; 2002 Oct; 40(10):501-6. PubMed ID: 12235531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Quantitative analysis of cerebrospinal fluid dynamics in syringomyelia using cine MRI with pre-saturation].
    Matsuzawa H; Hida K; Houkin K; Yoshinobu I; Abe H; Akino M; Saito H
    No To Shinkei; 1992 Jan; 44(1):24-9. PubMed ID: 1562382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrospinal fluid flow dynamics study in Chiari I malformation: implications for syrinx formation.
    Pinna G; Alessandrini F; Alfieri A; Rossi M; Bricolo A
    Neurosurg Focus; 2000 Mar; 8(3):E3. PubMed ID: 16676926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrospinal Fluid Hydrodynamics in Chiari I Malformation and Syringomyelia: Modeling Pathophysiology.
    Heiss JD
    Neurosurg Clin N Am; 2023 Jan; 34(1):81-90. PubMed ID: 36424067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development.
    Bilston LE; Stoodley MA; Fletcher DF
    J Neurosurg; 2010 Apr; 112(4):808-13. PubMed ID: 19522574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiology of primary spinal syringomyelia.
    Heiss JD; Snyder K; Peterson MM; Patronas NJ; Butman JA; Smith RK; Devroom HL; Sansur CA; Eskioglu E; Kammerer WA; Oldfield EH
    J Neurosurg Spine; 2012 Nov; 17(5):367-80. PubMed ID: 22958075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrospinal fluid area and syringogenesis in Chiari malformation type I.
    Taylor DG; Chatrath A; Mastorakos P; Paisan G; Chen CJ; Buell TJ; Jane JA
    J Neurosurg; 2020 Feb; 134(3):825-830. PubMed ID: 32084641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment.
    Oldfield EH; Muraszko K; Shawker TH; Patronas NJ
    J Neurosurg; 1994 Jan; 80(1):3-15. PubMed ID: 8271018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in temporal flow characteristics of CSF in Chiari malformation Type I with and without syringomyelia: implications for theory of syrinx development.
    Clarke EC; Stoodley MA; Bilston LE
    J Neurosurg; 2013 May; 118(5):1135-40. PubMed ID: 23495878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathogenesis of syringomyelia associated with lesions at the foramen magnum: a critical review of existing theories and proposal of a new hypothesis.
    Levine DN
    J Neurol Sci; 2004 May; 220(1-2):3-21. PubMed ID: 15140600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid dynamics in syringomyelia cavities: Effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression.
    Vinje V; Brucker J; Rognes ME; Mardal KA; Haughton V
    Neuroradiol J; 2018 Oct; 31(5):482-489. PubMed ID: 30114970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of Syrinx Fluid in Syringomyelia: A Physiological Study.
    Heiss JD; Jarvis K; Smith RK; Eskioglu E; Gierthmuehlen M; Patronas NJ; Butman JA; Argersinger DP; Lonser RR; Oldfield EH
    Neurosurgery; 2019 Feb; 84(2):457-468. PubMed ID: 29618081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Burke S; Jones NR
    Spine (Phila Pa 1976); 2003 Oct; 28(20):E413-9. PubMed ID: 14560096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the riddle of syringomyelia.
    Greitz D
    Neurosurg Rev; 2006 Oct; 29(4):251-63; discussion 264. PubMed ID: 16752160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syringo-Subarachnoid Shunt for the Treatment of Persistent Syringomyelia Following Decompression for Chiari Type I Malformation: Surgical Results.
    Soleman J; Roth J; Bartoli A; Rosenthal D; Korn A; Constantini S
    World Neurosurg; 2017 Dec; 108():836-843. PubMed ID: 28807779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.