These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29097207)

  • 1. Site-specific aptamer inhibitors of Thermus RNA polymerase.
    Miropolskaya N; Feklistov A; Nikiforov V; Kulbachinskiy A
    Biochem Biophys Res Commun; 2018 Jan; 495(1):110-115. PubMed ID: 29097207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase.
    Miropolskaya N; Kulbachinskiy A
    Biochem Biophys Res Commun; 2016 Jan; 469(2):294-9. PubMed ID: 26631966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus.
    Zhilina EV; Miropolskaya NA; Bass IA; Brodolin KL; Kulbachinskiy AV
    Biochemistry (Mosc); 2011 Oct; 76(10):1098-106. PubMed ID: 22098235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme.
    Feklistov A; Barinova N; Sevostyanova A; Heyduk E; Bass I; Vvedenskaya I; Kuznedelov K; Merkiene E; Stavrovskaya E; Klimasauskas S; Nikiforov V; Heyduk T; Severinov K; Kulbachinskiy A
    Mol Cell; 2006 Jul; 23(1):97-107. PubMed ID: 16798040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Thermus aquaticus RNA polymerase for structural studies.
    Kuznedelov K; Lamour V; Patikoglou G; Chlenov M; Darst SA; Severinov K
    J Mol Biol; 2006 May; 359(1):110-21. PubMed ID: 16618493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.
    Minakhin L; Nechaev S; Campbell EA; Severinov K
    J Bacteriol; 2001 Jan; 183(1):71-6. PubMed ID: 11114902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB.
    Kulbachinskiy A; Feklistov A; Krasheninnikov I; Goldfarb A; Nikiforov V
    Eur J Biochem; 2004 Dec; 271(23-24):4921-31. PubMed ID: 15606780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural modules of RNA polymerase required for transcription from promoters containing downstream basal promoter element GGGA.
    Barinova N; Kuznedelov K; Severinov K; Kulbachinskiy A
    J Biol Chem; 2008 Aug; 283(33):22482-9. PubMed ID: 18574242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
    Naryshkina T; Kuznedelov K; Severinov K
    J Mol Biol; 2006 Aug; 361(4):634-43. PubMed ID: 16781733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation.
    Ooi WY; Murayama Y; Mekler V; Minakhin L; Severinov K; Yokoyama S; Sekine SI
    Nucleic Acids Res; 2018 Jan; 46(1):431-441. PubMed ID: 29165680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-stranded DNA aptamers for functional probing of bacterial RNA polymerase.
    Pupov D; Kulbachinskiy A
    Methods Mol Biol; 2015; 1276():165-83. PubMed ID: 25665563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-strand promoter traps for bacterial RNA polymerase.
    Pupov D; Esyunina D; Feklistov A; Kulbachinskiy A
    Biochem J; 2013 Jun; 452(2):241-8. PubMed ID: 23517087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.
    Mekler V; Minakhin L; Kuznedelov K; Mukhamedyarov D; Severinov K
    Nucleic Acids Res; 2012 Dec; 40(22):11352-62. PubMed ID: 23087380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.
    Tagami S; Sekine S; Kumarevel T; Hino N; Murayama Y; Kamegamori S; Yamamoto M; Sakamoto K; Yokoyama S
    Nature; 2010 Dec; 468(7326):978-82. PubMed ID: 21124318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory RNA aptamer against SP6 RNA polymerase.
    Mori Y; Nakamura Y; Ohuchi S
    Biochem Biophys Res Commun; 2012 Apr; 420(2):440-3. PubMed ID: 22426482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of bacterial RNA polymerase.
    Murakami KS
    Biomolecules; 2015 May; 5(2):848-64. PubMed ID: 25970587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA polymerase "switch region" is a target for inhibitors.
    Mukhopadhyay J; Das K; Ismail S; Koppstein D; Jang M; Hudson B; Sarafianos S; Tuske S; Patel J; Jansen R; Irschik H; Arnold E; Ebright RH
    Cell; 2008 Oct; 135(2):295-307. PubMed ID: 18957204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of promoters recognized by RNA polymerase-sigmaE holoenzyme from Thermus thermophilus HB8.
    Shinkai A; Ohbayashi N; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S
    J Bacteriol; 2007 Dec; 189(23):8758-64. PubMed ID: 17905996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific recognition of the -10 promoter element by the free RNA polymerase sigma subunit.
    Sevostyanova A; Feklistov A; Barinova N; Heyduk E; Bass I; Klimasauskas S; Heyduk T; Kulbachinskiy A
    J Biol Chem; 2007 Jul; 282(30):22033-9. PubMed ID: 17535803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of antibiotics inhibiting bacterial RNA polymerase.
    Mosaei H; Harbottle J
    Biochem Soc Trans; 2019 Feb; 47(1):339-350. PubMed ID: 30647141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.