These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. Ohman-Gault L; Huang T; Krimm R J Comp Neurol; 2017 Dec; 525(18):3935-3950. PubMed ID: 28856690 [TBL] [Abstract][Full Text] [Related]
7. Response characteristics of lamb pontine neurons to stimulation of the oral cavity and epiglottis with different sensory modalities. Sweazey RD; Bradley RM J Neurophysiol; 1993 Sep; 70(3):1168-80. PubMed ID: 8229166 [TBL] [Abstract][Full Text] [Related]
8. The characteristics and regional distribution of afferent fibres in the chorda tympani of the cat. Robinson PP J Physiol; 1988 Dec; 406():345-57. PubMed ID: 3254415 [TBL] [Abstract][Full Text] [Related]
9. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling. Whitehead MC; Ganchrow JR; Ganchrow D; Yao B Neuroscience; 1999; 93(3):931-41. PubMed ID: 10473258 [TBL] [Abstract][Full Text] [Related]
11. Biophysical properties and responses to neurotransmitters of petrosal and geniculate ganglion neurons innervating the tongue. Koga T; Bradley RM J Neurophysiol; 2000 Sep; 84(3):1404-13. PubMed ID: 10980013 [TBL] [Abstract][Full Text] [Related]
12. P2X(2)- and P2X(3)-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. Ishida Y; Ugawa S; Ueda T; Yamada T; Shibata Y; Hondoh A; Inoue K; Yu Y; Shimada S J Comp Neurol; 2009 May; 514(2):131-44. PubMed ID: 19266560 [TBL] [Abstract][Full Text] [Related]
13. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture. Grigaliunas A; Bradley RM; MacCallum DK; Mistretta CM J Neurophysiol; 2002 Oct; 88(4):2058-74. PubMed ID: 12364528 [TBL] [Abstract][Full Text] [Related]
14. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis. Hanamori T; Hirota K; Ishiko N J Gen Physiol; 1990 Jun; 95(6):1159-82. PubMed ID: 2374001 [TBL] [Abstract][Full Text] [Related]
15. Early development and innervation of taste bud-bearing papillae on the rat tongue. Farbman AI; Mbiene JP J Comp Neurol; 1991 Feb; 304(2):172-86. PubMed ID: 2016415 [TBL] [Abstract][Full Text] [Related]
16. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes. Farbman AI; Guagliardo N; Sollars SI; Hill DL J Neurosci Res; 2004 Dec; 78(5):659-67. PubMed ID: 15495212 [TBL] [Abstract][Full Text] [Related]
17. Taste-responsive neurons of the glossopharyngeal nerve of the rat. Frank ME J Neurophysiol; 1991 Jun; 65(6):1452-63. PubMed ID: 1875254 [TBL] [Abstract][Full Text] [Related]
18. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue. Mbiene JP J Neurocytol; 2004 Dec; 33(6):617-29. PubMed ID: 16217618 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of sodium currents in rat geniculate ganglion neurons. Nakamura S; Bradley RM J Neurophysiol; 2011 Dec; 106(6):2982-91. PubMed ID: 21917997 [TBL] [Abstract][Full Text] [Related]
20. Developmental decrease in size of peripheral receptive fields of single chorda tympani nerve fibers and relation to increasing NaCl taste sensitivity. Nagai T; Mistretta CM; Bradley RM J Neurosci; 1988 Jan; 8(1):64-72. PubMed ID: 3339419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]