BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29097278)

  • 1. HAMDA: Hybrid Approach for MiRNA-Disease Association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Biomed Inform; 2017 Dec; 76():50-58. PubMed ID: 29097278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.
    Chen X; Yan CC; Zhang X; You ZH; Huang YA; Yan GY
    Oncotarget; 2016 Oct; 7(40):65257-65269. PubMed ID: 27533456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NARRMDA: negative-aware and rating-based recommendation algorithm for miRNA-disease association prediction.
    Peng L; Chen Y; Ma N; Chen X
    Mol Biosyst; 2017 Nov; 13(12):2650-2659. PubMed ID: 29053164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
    Chen X; Zhou Z; Zhao Y
    RNA Biol; 2018; 15(6):807-818. PubMed ID: 29619882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating random walk and binary regression to identify novel miRNA-disease association.
    Niu YW; Wang GH; Yan GY; Chen X
    BMC Bioinformatics; 2019 Jan; 20(1):59. PubMed ID: 30691413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal entropy random walk on heterogenous network for MIRNA-disease Association prediction.
    Niu YW; Liu H; Wang GH; Yan GY
    Math Biosci; 2018 Dec; 306():1-9. PubMed ID: 30336146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network.
    Yu DL; Ma YL; Yu ZG
    Sci Rep; 2019 Feb; 9(1):2474. PubMed ID: 30792474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering.
    Nie R; Li Z; You ZH; Bao W; Li J
    BMC Med Inform Decis Mak; 2021 Aug; 21(Suppl 1):254. PubMed ID: 34461870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HNMDA: heterogeneous network-based miRNA-disease association prediction.
    Peng LH; Sun CN; Guan NN; Li JQ; Chen X
    Mol Genet Genomics; 2018 Aug; 293(4):983-995. PubMed ID: 29687157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting miRNA-disease association based on inductive matrix completion.
    Chen X; Wang L; Qu J; Guan NN; Li JQ
    Bioinformatics; 2018 Dec; 34(24):4256-4265. PubMed ID: 29939227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Neighborhood-Based Computational Model for Potential MiRNA-Disease Association Prediction.
    Liu Y; Li X; Feng X; Wang L
    Comput Math Methods Med; 2019; 2019():5145646. PubMed ID: 30800172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Laplacian regularized matrix completion for microRNA-disease associations prediction.
    Tang C; Zhou H; Zheng X; Zhang Y; Sha X
    RNA Biol; 2019 May; 16(5):601-611. PubMed ID: 30676207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying and Exploiting Potential miRNA-Disease Associations With Neighborhood Regularized Logistic Matrix Factorization.
    He BS; Qu J; Zhao Q
    Front Genet; 2018; 9():303. PubMed ID: 30131824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.