BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29097283)

  • 1. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates.
    Lyagin IV; Efremenko EN
    Biochimie; 2018 Jan; 144():115-121. PubMed ID: 29097283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase.
    Aslanli A; Lyagin I; Efremenko E
    Biol Chem; 2018 Jul; 399(8):869-879. PubMed ID: 29870390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates.
    Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A
    Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidants as stabilizers for His6-OPH: is this an unusual or regular role for them with enzymes?
    Efremenko EN; Lyagin IV; Cuong LH; Huong LM
    J Biochem; 2017 Nov; 162(5):327-334. PubMed ID: 28637331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.
    Lyagin IV; Andrianova MS; Efremenko EN
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5829-38. PubMed ID: 26932546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins.
    Efremenko EN; Lyagin IV; Klyachko NL; Bronich T; Zavyalova NV; Jiang Y; Kabanov AV
    J Control Release; 2017 Feb; 247():175-181. PubMed ID: 28043864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous molecular docking of different ligands to His
    Aslanli A; Efremenko E
    PeerJ; 2019; 7():e7684. PubMed ID: 31565584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charges' interaction in polyelectrolyte (nano)complexing of His
    Aslanli A; Lyagin I; Efremenko E
    Int J Biol Macromol; 2019 Nov; 140():368-376. PubMed ID: 31425763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier Variety Used in Immobilization of His
    Efremenko E; Lyagin I; Aslanli A; Stepanov N; Maslova O; Senko O
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes.
    Aslanli A; Domnin M; Stepanov N; Efremenko E
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Universal" Antimicrobial Combination of Bacitracin and His
    Aslanli A; Domnin M; Stepanov N; Efremenko E
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Cell-Inorganic Hybrid Catalytic Interfaces with Enhanced Enzymatic Activity and Stability for Sensitive Biosensing of Paraoxon.
    Han L; Liu A
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6894-6901. PubMed ID: 28199084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes hydrolyzing organophosphates as potential catalytic scavengers against organophosphate poisoning.
    Masson P; Josse D; Lockridge O; Viguié N; Taupin C; Buhler C
    J Physiol Paris; 1998; 92(5-6):357-62. PubMed ID: 9789837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins.
    Lenfant N; Bourne Y; Marchot P; Chatonnet A
    Chem Biol Interact; 2016 Nov; 259(Pt B):343-351. PubMed ID: 27109753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.
    Hoque MA; Zhang Y; Chen L; Yang G; Khatun MA; Chen H; Hao L; Feng Y
    ACS Chem Biol; 2017 May; 12(5):1188-1193. PubMed ID: 28323400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity.
    diTargiani RC; Chandrasekaran L; Belinskaya T; Saxena A
    Chem Biol Interact; 2010 Sep; 187(1-3):349-54. PubMed ID: 20176006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates.
    Liu R; Yang C; Xu Y; Xu P; Jiang H; Qiao C
    J Agric Food Chem; 2013 Aug; 61(32):7810-6. PubMed ID: 23875606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of hexahistidine-tagged organophosphate hydrolase.
    Votchitseva YA; Efremenko EN; Aliev TK; Varfolomeyev SD
    Biochemistry (Mosc); 2006 Feb; 71(2):167-72. PubMed ID: 16489921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent.
    Jeong YS; Choi JM; Kyeong HH; Choi JY; Kim EJ; Kim HS
    Biochem Biophys Res Commun; 2014 Jul; 449(3):263-7. PubMed ID: 24824182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational protein design and protein-ligand interaction studies for the improvement of organophosphorus degrading potential of Deinococcus radiodurans.
    Manoharan P; Sridhar J
    J Mol Graph Model; 2018 Aug; 83():12-16. PubMed ID: 29753940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.