These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 29097309)

  • 1. Emerging tumor spheroids technologies for 3D in vitro cancer modeling.
    Rodrigues T; Kundu B; Silva-Correia J; Kundu SC; Oliveira JM; Reis RL; Correlo VM
    Pharmacol Ther; 2018 Apr; 184():201-211. PubMed ID: 29097309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce
    Bassi G; Grimaudo MA; Panseri S; Montesi M
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.
    Thoma CR; Zimmermann M; Agarkova I; Kelm JM; Krek W
    Adv Drug Deliv Rev; 2014 Apr; 69-70():29-41. PubMed ID: 24636868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology.
    Trivedi P; Liu R; Bi H; Xu C; Rosenholm JM; Åkerfelt M
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The multicellular tumor spheroid model for high-throughput cancer drug discovery.
    LaBarbera DV; Reid BG; Yoo BH
    Expert Opin Drug Discov; 2012 Sep; 7(9):819-30. PubMed ID: 22788761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting technologies for disease modeling.
    Memic A; Navaei A; Mirani B; Cordova JAV; Aldhahri M; Dolatshahi-Pirouz A; Akbari M; Nikkhah M
    Biotechnol Lett; 2017 Sep; 39(9):1279-1290. PubMed ID: 28550360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional in vitro cancer models: a short review.
    Wang C; Tang Z; Zhao Y; Yao R; Li L; Sun W
    Biofabrication; 2014 Jun; 6(2):022001. PubMed ID: 24727833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D tumor spheroids: an overview on the tools and techniques used for their analysis.
    Costa EC; Moreira AF; de Melo-Diogo D; Gaspar VM; Carvalho MP; Correia IJ
    Biotechnol Adv; 2016 Dec; 34(8):1427-1441. PubMed ID: 27845258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer drug discovery: recent innovative approaches to tumor modeling.
    Lovitt CJ; Shelper TB; Avery VM
    Expert Opin Drug Discov; 2016 Sep; 11(9):885-94. PubMed ID: 27454169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials-Based Approaches to Tumor Spheroid and Organoid Modeling.
    Thakuri PS; Liu C; Luker GD; Tavana H
    Adv Healthc Mater; 2018 Mar; 7(6):e1700980. PubMed ID: 29205942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment.
    Zhuang P; Chiang YH; Fernanda MS; He M
    Int J Bioprint; 2021; 7(4):444. PubMed ID: 34805601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.