BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29097311)

  • 1. CagL from Helicobacter pylori has ADP-ribosylation activity and exerts partial protective efficacy in mice.
    Talluri E; Pancotto L; Ruggiero P; Scarselli M; Balducci E
    Arch Biochem Biophys; 2017 Dec; 635():102-109. PubMed ID: 29097311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase.
    Okazaki IJ; Kim HJ; Moss J
    J Biol Chem; 1996 Sep; 271(36):22052-7. PubMed ID: 8703012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helicobacter pylori induces mono-(adenosine 5'-diphosphate)-ribosylation in human gastric adenocarcinoma.
    Akai T; Nabeya Y; Yahiro K; Morinaga N; Mitsuhashi K; Inoue M; Sakamoto A; Ochiai T; Noda M
    Int J Oncol; 2006 Oct; 29(4):965-72. PubMed ID: 16964392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis.
    Masignani V; Balducci E; Di Marcello F; Savino S; Serruto D; Veggi D; Bambini S; Scarselli M; Aricò B; Comanducci M; Adu-Bobie J; Giuliani MM; Rappuoli R; Pizza M
    Mol Microbiol; 2003 Nov; 50(3):1055-67. PubMed ID: 14617161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins.
    Castagnini M; Picchianti M; Talluri E; Biagini M; Del Vecchio M; Di Procolo P; Norais N; Nardi-Dei V; Balducci E
    PLoS One; 2012; 7(8):e41417. PubMed ID: 22879887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells.
    Stilla A; Di Paola S; Dani N; Krebs C; Arrizza A; Corda D; Haag F; Koch-Nolte F; Di Girolamo M
    Eur J Cell Biol; 2011 Aug; 90(8):665-77. PubMed ID: 21616557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of ADP-Ribosylating Bacterial Toxins.
    Chen C; Barbieri JT
    Methods Mol Biol; 2018; 1813():287-295. PubMed ID: 30097876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of eukaryotic mono-ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Rev Physiol Biochem Pharmacol; 1996; 129():51-104. PubMed ID: 8898563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an iron-sulfur cluster that modulates the enzymatic activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase.
    Del Vecchio M; Pogni R; Baratto MC; Nobbs A; Rappuoli R; Pizza M; Balducci E
    J Biol Chem; 2009 Nov; 284(48):33040-7. PubMed ID: 19744927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role of intracellular mono-ADP-ribosylation in cancer biology.
    Scarpa ES; Fabrizio G; Di Girolamo M
    FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells.
    Koch-Nolte F; Adriouch S; Bannas P; Krebs C; Scheuplein F; Seman M; Haag F
    Ann Med; 2006; 38(3):188-99. PubMed ID: 16720433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration and partial characterization of ADP-ribosylation in Pseudomonas maltophilia.
    Edmonds C; Griffin GE; Johnstone AP
    Biochem J; 1989 Jul; 261(1):113-8. PubMed ID: 2505752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrio fischeri genes hvnA and hvnB encode secreted NAD(+)-glycohydrolases.
    Stabb EV; Reich KA; Ruby EG
    J Bacteriol; 2001 Jan; 183(1):309-17. PubMed ID: 11114931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of the art of protein mono-ADP-ribosylation: biological role and therapeutic potential.
    Fabrizio G; Scarpa ES; Di Girolamo M
    Front Biosci (Landmark Ed); 2015 Jan; 20(3):405-30. PubMed ID: 25553458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.