BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29097628)

  • 1. Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI.
    Van de Moortele T; Wendt CH; Coletti F
    J Appl Physiol (1985); 2018 Feb; 124(2):400-413. PubMed ID: 29097628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers.
    Diaz AA; Rahaghi FN; Ross JC; Harmouche R; Tschirren J; San José Estépar R; Washko GR;
    Respir Res; 2015 Feb; 16(1):23. PubMed ID: 25848985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images.
    Sauret V; Halson PM; Brown IW; Fleming JS; Bailey AG
    J Anat; 2002 Feb; 200(Pt 2):123-34. PubMed ID: 11895110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry.
    de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G
    J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of an anatomically based three-dimensional model of the conducting airways.
    Howatson Tawhai M; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 2000 Jul; 28(7):793-802. PubMed ID: 11016416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models.
    Montaudon M; Desbarats P; Berger P; de Dietrich G; Marthan R; Laurent F
    J Anat; 2007 Nov; 211(5):579-88. PubMed ID: 17919291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airway morphology and inspiratory flow features in the early stages of Chronic Obstructive Pulmonary Disease.
    Van de Moortele T; Goerke U; Wendt CH; Coletti F
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():60-65. PubMed ID: 29169684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized compliance of small airways in excised rat lungs using microfocal X-ray computed tomography.
    Sera T; Fujioka H; Yokota H; Makinouchi A; Himeno R; Schroter RC; Tanishita K
    J Appl Physiol (1985); 2004 May; 96(5):1665-73. PubMed ID: 14766787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT-based geometry analysis and finite element models of the human and ovine bronchial tree.
    Tawhai MH; Hunter P; Tschirren J; Reinhardt J; McLennan G; Hoffman EA
    J Appl Physiol (1985); 2004 Dec; 97(6):2310-21. PubMed ID: 15322064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airway tapering: an objective image biomarker for bronchiectasis.
    Kuo W; Perez-Rovira A; Tiddens H; de Bruijne M;
    Eur Radiol; 2020 May; 30(5):2703-2711. PubMed ID: 32025831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional visualization and morphometry of small airways from microfocal X-ray computed tomography.
    Sera T; Fujioka H; Yokota H; Makinouchi A; Himeno R; Schroter RC; Tanishita K
    J Biomech; 2003 Nov; 36(11):1587-94. PubMed ID: 14522199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Numerical study on inspiratory flows in two and three generation bronchi of human lung airways].
    Zhang C; Wen S; Liu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):748-52. PubMed ID: 17002099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation.
    Montaudon M; Berger P; de Dietrich G; Braquelaire A; Marthan R; Tunon-de-Lara JM; Laurent F
    Radiology; 2007 Feb; 242(2):563-72. PubMed ID: 17179398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Branching design of the bronchial tree based on a diameter-flow relationship.
    Kitaoka H; Suki B
    J Appl Physiol (1985); 1997 Mar; 82(3):968-76. PubMed ID: 9074989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculated deposition in growing tracheobronchial airways: effect of growth-rate assumptions.
    Oldham MJ; Robinson RJ
    Inhal Toxicol; 2006 Sep; 18(10):803-8. PubMed ID: 16774870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the conducting airway system in the lung: a new method combining morphometry with mathematical modeling for airway classification.
    Lipsett J
    Anat Rec; 2002 Jan; 266(1):51-7. PubMed ID: 11748571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative morphometry of the upper bronchial tree in six mammalian species.
    Schlesinger RB; McFadden LA
    Anat Rec; 1981 Jan; 199(1):99-108. PubMed ID: 7013567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Normal Airway Morphology Using Optical Coherence Tomography.
    Su ZQ; Guan WJ; Li SY; Feng JX; Zhou ZQ; Chen Y; Zhong ML; Zhong NS
    Chest; 2019 Nov; 156(5):915-925. PubMed ID: 31265836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies.
    Christou S; Chatziathanasiou T; Angeli S; Koullapis P; Stylianou F; Sznitman J; Guo HH; Kassinos SC
    J Appl Physiol (1985); 2021 Mar; 130(3):678-707. PubMed ID: 33180641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A three dimensional fractal simulation of the lung bronchial tree].
    Huang X; Tan X; Pei J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):377-80, 386. PubMed ID: 15250137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.