BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29097684)

  • 21. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing.
    Rodriguez-Rozada S; Wietek J; Tenedini F; Sauter K; Dhiman N; Hegemann P; Soba P; Wiegert JS
    Commun Biol; 2022 Jul; 5(1):687. PubMed ID: 35810216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1.
    Kim YS; Kato HE; Yamashita K; Ito S; Inoue K; Ramakrishnan C; Fenno LE; Evans KE; Paggi JM; Dror RO; Kandori H; Kobilka BK; Deisseroth K
    Nature; 2018 Sep; 561(7723):343-348. PubMed ID: 30158696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential absorption of two photons creates a bistable form of RubyACR responsible for its strong desensitization.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Spudich JL
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301521120. PubMed ID: 37186849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of the red light-activated channelrhodopsin Chrimson.
    Oda K; Vierock J; Oishi S; Rodriguez-Rozada S; Taniguchi R; Yamashita K; Wiegert JS; Nishizawa T; Hegemann P; Nureki O
    Nat Commun; 2018 Sep; 9(1):3949. PubMed ID: 30258177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins.
    Brown J; Behnam R; Coddington L; Tervo DGR; Martin K; Proskurin M; Kuleshova E; Park J; Phillips J; Bergs ACF; Gottschalk A; Dudman JT; Karpova AY
    Cell; 2018 Nov; 175(4):1131-1140.e11. PubMed ID: 30343901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of channelrhodopsin into a light-gated chloride channel.
    Wietek J; Wiegert JS; Adeishvili N; Schneider F; Watanabe H; Tsunoda SP; Vogt A; Elstner M; Oertner TG; Hegemann P
    Science; 2014 Apr; 344(6182):409-12. PubMed ID: 24674867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination.
    Yamanashi T; Maki M; Kojima K; Shibukawa A; Tsukamoto T; Chowdhury S; Yamanaka A; Takagi S; Sudo Y
    Sci Rep; 2019 May; 9(1):7863. PubMed ID: 31133660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for ion selectivity and engineering in channelrhodopsins.
    Rappleye M; Berndt A
    Curr Opin Struct Biol; 2019 Aug; 57():176-184. PubMed ID: 31174050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of channelrhodopsin-2 localized within the deep CA1 hippocampal sublayer in the Thy1 line 18 mouse.
    Dobbins DL; Klorig DC; Smith T; Godwin DW
    Brain Res; 2018 Jan; 1679():179-184. PubMed ID: 29191773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
    Bedbrook CN; Yang KK; Robinson JE; Mackey ED; Gradinaru V; Arnold FH
    Nat Methods; 2019 Nov; 16(11):1176-1184. PubMed ID: 31611694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetics and Optical Tools in Automated Patch Clamping.
    Boddum K; Skafte-Pedersen P; Rolland JF; Wilson S
    Methods Mol Biol; 2021; 2188():311-330. PubMed ID: 33119859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing Channelrhodopsins: An Overview.
    Wietek J; Prigge M
    Methods Mol Biol; 2016; 1408():141-65. PubMed ID: 26965121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium channel-based optogenetic silencing.
    Bernal Sierra YA; Rost BR; Pofahl M; Fernandes AM; Kopton RA; Moser S; Holtkamp D; Masala N; Beed P; Tukker JJ; Oldani S; Bönigk W; Kohl P; Baier H; Schneider-Warme F; Hegemann P; Beck H; Seifert R; Schmitz D
    Nat Commun; 2018 Nov; 9(1):4611. PubMed ID: 30397200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gating and ion selectivity of Channelrhodopsins are critical for photo-activated orientation of Chlamydomonas as shown by in vivo point mutation.
    Baidukova O; Oppermann J; Kelterborn S; Fernandez Lahore RG; Schumacher D; Evers H; Kamrani YY; Hegemann P
    Nat Commun; 2022 Nov; 13(1):7253. PubMed ID: 36433995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic Methods for the Study of Circadian Rhythms.
    Jones JR; Tackenberg MC; McMahon DG
    Methods Mol Biol; 2021; 2130():325-336. PubMed ID: 33284455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity.
    Bi X; Beck C; Gong Y
    Biophys J; 2022 Nov; 121(21):4166-4178. PubMed ID: 36151721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic vitamin A
    Gerhards J; Volkov LI; Corbo JC; Malan D; Sasse P
    Pflugers Arch; 2023 Dec; 475(12):1409-1419. PubMed ID: 37987804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.