BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 29097684)

  • 41. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optogenetic manipulation of medullary neurons in the locust optic lobe.
    Wang H; Dewell RB; Ehrengruber MU; Segev E; Reimer J; Roukes ML; Gabbiani F
    J Neurophysiol; 2018 Oct; 120(4):2049-2058. PubMed ID: 30110231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions.
    Ganjawala TH; Lu Q; Fenner MD; Abrams GW; Pan ZH
    Mol Ther; 2019 Jun; 27(6):1195-1205. PubMed ID: 31010741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoexcitation of the P
    Saita M; Pranga-Sellnau F; Resler T; Schlesinger R; Heberle J; Lorenz-Fonfria VA
    J Am Chem Soc; 2018 Aug; 140(31):9899-9903. PubMed ID: 30036055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel luciferase-opsin combinations for improved luminopsins.
    Park SY; Song SH; Palmateer B; Pal A; Petersen ED; Shall GP; Welchko RM; Ibata K; Miyawaki A; Augustine GJ; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):410-421. PubMed ID: 28862809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics.
    Meloni I; Sachidanandan D; Thum AS; Kittel RJ; Murawski C
    Sci Rep; 2020 Oct; 10(1):17614. PubMed ID: 33077824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ion selectivity and competition in channelrhodopsins.
    Schneider F; Gradmann D; Hegemann P
    Biophys J; 2013 Jul; 105(1):91-100. PubMed ID: 23823227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implications for the impairment of the rapid channel closing of Proteomonas sulcata anion channelrhodopsin 1 at high Cl
    Tsukamoto T; Kikuchi C; Suzuki H; Aizawa T; Kikukawa T; Demura M
    Sci Rep; 2018 Sep; 8(1):13445. PubMed ID: 30194401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. WiChR, a highly potassium-selective channelrhodopsin for low-light one- and two-photon inhibition of excitable cells.
    Vierock J; Shiewer E; Grimm C; Rozenberg A; Chen IW; Tillert L; Castro Scalise AG; Casini M; Augustin S; Tanese D; Forget BC; Peyronnet R; Schneider-Warme F; Emiliani V; Béjà O; Hegemann P
    Sci Adv; 2022 Dec; 8(49):eadd7729. PubMed ID: 36383037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels.
    Berndt A; Schoenenberger P; Mattis J; Tye KM; Deisseroth K; Hegemann P; Oertner TG
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7595-600. PubMed ID: 21504945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition.
    Govorunova EG; Gou Y; Sineshchekov OA; Li H; Lu X; Wang Y; Brown LS; St-Pierre F; Xue M; Spudich JL
    Nat Neurosci; 2022 Jul; 25(7):967-974. PubMed ID: 35726059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural Foundations of Potassium Selectivity in Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Brown LS; Bondar AN; Spudich JL
    mBio; 2022 Dec; 13(6):e0303922. PubMed ID: 36413022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetics to Interrogate Neuron-Glia Interactions in Pups and Adults.
    Habermacher C; Manot-Saillet B; Ortolani D; Ortiz FC; Angulo MC
    Methods Mol Biol; 2021; 2191():135-149. PubMed ID: 32865743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multidimensional screening yields channelrhodopsin variants having improved photocurrent and order-of-magnitude reductions in calcium and proton currents.
    Cho YK; Park D; Yang A; Chen F; Chuong AS; Klapoetke NC; Boyden ES
    J Biol Chem; 2019 Mar; 294(11):3806-3821. PubMed ID: 30610117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Green-Sensitive, Long-Lived, Step-Functional Anion Channelrhodopsin-2 Variant as a High-Potential Neural Silencing Tool.
    Kojima K; Miyoshi N; Shibukawa A; Chowdhury S; Tsujimura M; Noji T; Ishikita H; Yamanaka A; Sudo Y
    J Phys Chem Lett; 2020 Aug; 11(15):6214-6218. PubMed ID: 32697087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Blue Light Increases Neuronal Activity-Regulated Gene Expression in the Absence of Optogenetic Proteins.
    Tyssowski KM; Gray JM
    eNeuro; 2019; 6(5):. PubMed ID: 31444226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin.
    Dreier MA; Althoff P; Norahan MJ; Tennigkeit SA; El-Mashtoly SF; Lübben M; Kötting C; Rudack T; Gerwert K
    Commun Biol; 2021 May; 4(1):578. PubMed ID: 33990694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens.
    Tashiro R; Sushmita K; Hososhima S; Sharma S; Kateriya S; Kandori H; Tsunoda SP
    Commun Biol; 2021 Feb; 4(1):235. PubMed ID: 33623126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.