These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29097696)

  • 1. Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain.
    Anderson CS; Ortega S; Chaves FA; Clark AM; Yang H; Topham DJ; DeDiego ML
    Sci Rep; 2017 Nov; 7(1):14614. PubMed ID: 29097696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the Hemagglutinin Stalk Domain Do Not Permit Escape from a Protective, Stalk-Based Vaccine-Induced Immune Response in the Mouse Model.
    Roubidoux EK; Carreño JM; McMahon M; Jiang K; van Bakel H; Wilson P; Krammer F
    mBio; 2021 Feb; 12(1):. PubMed ID: 33593972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigenic drift of the pandemic 2009 A(H1N1) influenza virus in A ferret model.
    Guarnaccia T; Carolan LA; Maurer-Stroh S; Lee RT; Job E; Reading PC; Petrie S; McCaw JM; McVernon J; Hurt AC; Kelso A; Mosse J; Barr IG; Laurie KL
    PLoS Pathog; 2013; 9(5):e1003354. PubMed ID: 23671418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies.
    Kirchenbaum GA; Carter DM; Ross TM
    J Virol; 2016 Jan; 90(2):1116-28. PubMed ID: 26559834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Detection of conservative and variable epitopes of the pandemic influenza virus A(H1N1)pdm09 hemagglutinin using monoclonal antibodies].
    Masalova OV; Chichev EV; Fediakina IT; Mukasheva EA; Klimova RR; Shchelkanov MIu; Burtseva EI; Ivanova VT; Kushch AA; L'vov DK
    Vopr Virusol; 2014; 59(3):34-40. PubMed ID: 25335417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice.
    Wang Y; Wu J; Xue C; Wu Z; Lin Y; Wei Y; Wei X; Qin J; Zhang Y; Wen Z; Chen L; Liu GD; Cao Y
    Antiviral Res; 2017 Jul; 143():97-105. PubMed ID: 28408133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.
    Goff PH; Hayashi T; Martínez-Gil L; Corr M; Crain B; Yao S; Cottam HB; Chan M; Ramos I; Eggink D; Heshmati M; Krammer F; Messer K; Pu M; Fernandez-Sesma A; Palese P; Carson DA
    J Virol; 2015 Mar; 89(6):3221-35. PubMed ID: 25568203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of pre-existing immunity on the induction of functional cross-reactive anti-hemagglutinin stalk antibodies following vaccination with an AS03 adjuvanted pandemic H1N1 vaccine.
    Tete SM; Jul-Larsen Å; Rostami S; Lunde THF; Søland H; Krammer F; Cox RJ
    Vaccine; 2018 Apr; 36(16):2213-2219. PubMed ID: 29548607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses.
    Job ER; Deng YM; Barfod KK; Tate MD; Caldwell N; Reddiex S; Maurer-Stroh S; Brooks AG; Reading PC
    J Immunol; 2013 Mar; 190(5):2169-77. PubMed ID: 23365085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans.
    Nogales A; Martinez-Sobrido L; Chiem K; Topham DJ; DeDiego ML
    J Virol; 2018 Oct; 92(19):. PubMed ID: 30021892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and applications of novel influenza HA tri-stalk protein for evaluation of HA stem-specific immunity.
    Lu IN; Kirsteina A; Farinelle S; Willieme S; Tars K; Muller CP; Kazaks A
    PLoS One; 2018; 13(9):e0204776. PubMed ID: 30261065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.
    Chai N; Swem LR; Reichelt M; Chen-Harris H; Luis E; Park S; Fouts A; Lupardus P; Wu TD; Li O; McBride J; Lawrence M; Xu M; Tan MW
    PLoS Pathog; 2016 Jun; 12(6):e1005702. PubMed ID: 27351973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization and phylogenetic analysis of the hemagglutinin 1 protein of human influenza A virus subtype H1N1 circulating in Kenya during 2007-2008.
    Bulimo WD; Achilla RA; Majanja J; Mukunzi S; Wadegu M; Osunna F; Mwangi J; Njiri J; Wangui J; Nyambura J; Obura B; Mitei K; Omariba D; Segecha S; Nderitu M; Odindo A; Adega C; Kiponda J; Mupa R; Munyazi F; Kissinger G; Mwakuzimu M; Kamola D; Muhidin E; Kamau D; Kairithia S; Koech M; Sang A; Onge'ta L; Schnabel DC
    J Infect Dis; 2012 Dec; 206 Suppl 1():S46-52. PubMed ID: 23169971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuraminidase-Inhibiting Antibody Titers Correlate with Protection from Heterologous Influenza Virus Strains of the Same Neuraminidase Subtype.
    Walz L; Kays SK; Zimmer G; von Messling V
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29925654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.
    Xia C; Wolf JJ; Vijayan M; Studstill CJ; Ma W; Hahm B
    J Virol; 2018 Apr; 92(7):. PubMed ID: 29343571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.
    Mooney AJ; Gabbard JD; Li Z; Dlugolenski DA; Johnson SK; Tripp RA; He B; Tompkins SM
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28931689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B.
    Gong X; Yin H; Shi Y; He X; Yu Y; Guan S; Kuai Z; Haji NM; Haji NM; Kong W; Shan Y
    Emerg Microbes Infect; 2016 May; 5(5):e51. PubMed ID: 27222326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influenza virus-specific antibody dependent cellular cytoxicity induced by vaccination or natural infection.
    de Vries RD; Nieuwkoop NJ; Pronk M; de Bruin E; Leroux-Roels G; Huijskens EGW; van Binnendijk RS; Krammer F; Koopmans MPG; Rimmelzwaan GF
    Vaccine; 2017 Jan; 35(2):238-247. PubMed ID: 27914742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain.
    Raymond DD; Stewart SM; Lee J; Ferdman J; Bajic G; Do KT; Ernandes MJ; Suphaphiphat P; Settembre EC; Dormitzer PR; Del Giudice G; Finco O; Kang TH; Ippolito GC; Georgiou G; Kepler TB; Haynes BF; Moody MA; Liao HX; Schmidt AG; Harrison SC
    Nat Med; 2016 Dec; 22(12):1465-1469. PubMed ID: 27820604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evidence of a potential A(H1N1)pdm09 antigenic drift mediated by escape mutations in the haemagglutinin Sa antigenic site.
    Retamal M; Abed Y; Rhéaume C; Baz M; Boivin G
    J Gen Virol; 2017 Jun; 98(6):1224-1231. PubMed ID: 28631598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.