These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29097715)

  • 41. Fast atom bombardment mass spectrometric determination of the molecular weight range of uremic compounds that displace phenytoin from protein binding: absence of midmolecular uremic toxins.
    Dasgupta A; Malik S
    Am J Nephrol; 1994; 14(3):162-8. PubMed ID: 7977474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association of Uremic Toxins and Inflammatory Markers with Physical Performance in Dialysis Patients.
    Pajek M; Jerman A; Osredkar J; Ponikvar JB; Pajek J
    Toxins (Basel); 2018 Oct; 10(10):. PubMed ID: 30275410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HPLC study of uremic fluids related to optical dialysis adequacy monitoring.
    Lauri K; Tanner R; Jerotskaja J; Luman M; Fridolin I
    Int J Artif Organs; 2010 Feb; 33(2):96-104. PubMed ID: 20306436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of a novel adsorbent on cytokine responsiveness to uremic plasma.
    Morena MD; Guo D; Balakrishnan VS; Brady JA; Winchester JF; Jaber BL
    Kidney Int; 2003 Mar; 63(3):1150-4. PubMed ID: 12631100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients.
    Eloot S; Van Biesen W; Roels S; Delrue W; Schepers E; Dhondt A; Vanholder R; Glorieux G
    PLoS One; 2017; 12(10):e0186010. PubMed ID: 29016645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study.
    Arai Y; Shioji S; Tanaka H; Katagiri D; Hinoshita F
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33019590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines.
    Yushin G; Hoffman EN; Barsoum MW; Gogotsi Y; Howell CA; Sandeman SR; Phillips GJ; Lloyd AW; Mikhalovsky SV
    Biomaterials; 2006 Dec; 27(34):5755-62. PubMed ID: 16914195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study.
    Salarolli RT; Alvarenga L; Cardozo LFMF; Teixeira KTR; de S G Moreira L; Lima JD; Rodrigues SD; Nakao LS; Fouque D; Mafra D
    Int Urol Nephrol; 2021 Jun; 53(6):1231-1238. PubMed ID: 33438085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis.
    Li J; Han L; Xie J; Liu S; Jia L
    Carbohydr Polym; 2020 Nov; 247():116665. PubMed ID: 32829793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The uremic toxin, indoxyl sulfate, signifies cardio-renal risk and intestinal-renal relationship].
    Kiss I
    Orv Hetil; 2011 Oct; 152(43):1724-30. PubMed ID: 21983398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An adsorbent monolith device to augment the removal of uraemic toxins during haemodialysis.
    Sandeman SR; Howell CA; Phillips GJ; Zheng Y; Standen G; Pletzenauer R; Davenport A; Basnayake K; Boyd O; Holt S; Mikhalovsky SV
    J Mater Sci Mater Med; 2014 Jun; 25(6):1589-97. PubMed ID: 24573455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beta-2-microglobulin as a uremic toxin: the Japanese experience.
    Fujimori A
    Contrib Nephrol; 2011; 168():129-133. PubMed ID: 20938132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption- and Displacement-Based Approaches for the Removal of Protein-Bound Uremic Toxins.
    Rodrigues FSC; Faria M
    Toxins (Basel); 2023 Jan; 15(2):. PubMed ID: 36828424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Impact of CKD on Uremic Toxins and Gut Microbiota.
    Rysz J; Franczyk B; Ławiński J; Olszewski R; Ciałkowska-Rysz A; Gluba-Brzózka A
    Toxins (Basel); 2021 Mar; 13(4):. PubMed ID: 33807343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption capacity of poly(ether imide) microparticles to uremic toxins.
    Tetali SD; Jankowski V; Luetzow K; Kratz K; Lendlein A; Jankowski J
    Clin Hemorheol Microcirc; 2016; 61(4):657-65. PubMed ID: 26639769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Update of uremic toxin research by mass spectrometry.
    Niwa T
    Mass Spectrom Rev; 2011; 30(3):510-21. PubMed ID: 21328600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein-bound uremic toxins (PBUTs) in chronic kidney disease (CKD) patients: Production pathway, challenges and recent advances in renal PBUTs clearance.
    Daneshamouz S; Eduok U; Abdelrasoul A; Shoker A
    NanoImpact; 2021 Jan; 21():100299. PubMed ID: 35559786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein-bound uremic solutes: the forgotten toxins.
    Vanholder R; De Smet R; Lameire N
    Kidney Int Suppl; 2001 Feb; 78():S266-70. PubMed ID: 11169024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Search of Effective UiO-66 Metal-Organic Frameworks for Artificial Kidney Application.
    Dymek K; Kurowski G; Kuterasiński Ł; Jędrzejczyk R; Szumera M; Sitarz M; Pajdak A; Kurach Ł; Boguszewska-Czubara A; Jodłowski PJ
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45149-45160. PubMed ID: 34520182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography.
    Niwa T; Takeda N; Tatematsu A; Maeda K
    Clin Chem; 1988 Nov; 34(11):2264-7. PubMed ID: 3141084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.