BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29098465)

  • 1. A Metabolic Therapy for Malignant Glioma Requires a Clinical Measure.
    Corbin Z; Spielman D; Recht L
    Curr Oncol Rep; 2017 Nov; 19(12):84. PubMed ID: 29098465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially Resolved Bioenergetic and Genetic Reprogramming Through the Brain of Rats Bearing Implanted C6 Gliomas As Detected by Multinuclear High-Resolution Magic Angle Spinning and Genomic Analysis.
    Righi V; García-Martín ML; Mucci A; Schenetti L; Tugnoli V; Lopez-Larrubia P; Cerdán S
    J Proteome Res; 2018 Sep; 17(9):2953-2962. PubMed ID: 30129764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Long Non-Coding RNAs in Biological Characteristics and Aerobic Glycolysis of Glioma.
    Zhao N; Zhang J; Zhao Q; Chen C; Wang H
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma.
    Poff A; Koutnik AP; Egan KM; Sahebjam S; D'Agostino D; Kumar NB
    Semin Cancer Biol; 2019 Jun; 56():135-148. PubMed ID: 29294371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen.
    Pedersen PL
    J Bioenerg Biomembr; 2007 Jun; 39(3):211-22. PubMed ID: 17879147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Reprogramming in Glioma.
    Strickland M; Stoll EA
    Front Cell Dev Biol; 2017; 5():43. PubMed ID: 28491867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-495 mediates metabolic shift in glioma cells via targeting Glut1.
    Nie S; Li K; Huang Y; Hu Q; Gao X; Jie S
    J Craniofac Surg; 2015 Mar; 26(2):e155-8. PubMed ID: 25759932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.
    Khurshed M; Molenaar RJ; Lenting K; Leenders WP; van Noorden CJF
    Oncotarget; 2017 Jul; 8(30):49165-49177. PubMed ID: 28467784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial uncoupler DNP induces coexistence of dual-state hyper-energy metabolism leading to tumor growth advantage in human glioma xenografts.
    Rai Y; Singh S; Pandey S; Sah D; Sah RK; Roy BG; Dwarakanath BS; Bhatt AN
    Front Oncol; 2022; 12():1063531. PubMed ID: 36591481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines.
    Griguer CE; Oliva CR; Gillespie GY
    J Neurooncol; 2005 Sep; 74(2):123-33. PubMed ID: 16193382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism?
    Escoll P; Buchrieser C
    FEBS J; 2018 Jun; 285(12):2146-2160. PubMed ID: 29603622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects.
    Shang RZ; Qu SB; Wang DS
    World J Gastroenterol; 2016 Dec; 22(45):9933-9943. PubMed ID: 28018100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma.
    Eriksson JA; Wanka C; Burger MC; Urban H; Hartel I; von Renesse J; Harter PN; Mittelbronn M; Steinbach JP; Rieger J
    J Neurochem; 2018 Feb; 144(4):421-430. PubMed ID: 29178334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review).
    Zheng J
    Oncol Lett; 2012 Dec; 4(6):1151-1157. PubMed ID: 23226794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways.
    Jia D; Lu M; Jung KH; Park JH; Yu L; Onuchic JN; Kaipparettu BA; Levine H
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3909-3918. PubMed ID: 30733294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation.
    Zhou L; Wang Z; Hu C; Zhang C; Kovatcheva-Datchary P; Yu D; Liu S; Ren F; Wang X; Li Y; Hou X; Piao H; Lu X; Zhang Y; Xu G
    J Proteome Res; 2019 Mar; 18(3):960-969. PubMed ID: 30596429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States.
    Jia D; Park JH; Jung KH; Levine H; Kaipparettu BA
    Cells; 2018 Mar; 7(3):. PubMed ID: 29534029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell biology-metabolic crosstalk in glioma.
    Colquhoun A
    Int J Biochem Cell Biol; 2017 Aug; 89():171-181. PubMed ID: 28549626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.