These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29098480)

  • 1. Metagenomic analysis reveals potential interactions in an artificial coculture.
    Ren M; Zhang G; Ye Z; Qiao Z; Xie M; Lin Y; Li T; Zhao J
    AMB Express; 2017 Nov; 7(1):193. PubMed ID: 29098480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel
    Smith DJ; Kharbush JJ; Kersten RD; Dick GJ
    Appl Environ Microbiol; 2022 Jul; 88(14):e0180321. PubMed ID: 35862730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a
    Zheng Q; Wang Y; Lu J; Lin W; Chen F; Jiao N
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community.
    Xie M; Ren M; Yang C; Yi H; Li Z; Li T; Zhao J
    Front Microbiol; 2016; 7():56. PubMed ID: 26870018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Large-Scale Comparative Metagenomic Study Reveals the Functional Interactions in Six Bloom-Forming
    Li Q; Lin F; Yang C; Wang J; Lin Y; Shen M; Park MS; Li T; Zhao J
    Front Microbiol; 2018; 9():746. PubMed ID: 29731741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freshwater Cyanobacterium
    Liang Y; Zhang M; Wang M; Zhang W; Qiao C; Luo Q; Lu X
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of axenic cyanobacterium and the promoting effect of associated bacterium on axenic cyanobacterium.
    Gao S; Kong Y; Yu J; Miao L; Ji L; Song L; Zeng C
    BMC Biotechnol; 2020 Nov; 20(1):61. PubMed ID: 33256756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Variability of Cyanobacteria and Heterotrophic Bacteria in Lake Taihu (China).
    Qian H; Lu T; Song H; Lavoie M; Xu J; Fan X; Pan X
    Bull Environ Contam Toxicol; 2017 Sep; 99(3):380-384. PubMed ID: 28776189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sucrose in bloom-forming cyanobacteria: loss and gain of genes involved in its biosynthesis.
    Kolman MA; Salerno GL
    Environ Microbiol; 2016 Feb; 18(2):439-49. PubMed ID: 26913819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione.
    Li Z; Lin S; Liu X; Tan J; Pan J; Yang H
    Appl Microbiol Biotechnol; 2014 May; 98(10):4737-48. PubMed ID: 24566920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis.
    Ma J; Guo T; Ren M; Chen L; Song X; Zhang W
    Biotechnol Biofuels Bioprod; 2022 Jun; 15(1):69. PubMed ID: 35733176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002.
    Pérez AA; Rodionov DA; Bryant DA
    J Bacteriol; 2016 Oct; 198(19):2753-61. PubMed ID: 27457716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo.
    Pérez AA; Liu Z; Rodionov DA; Li Z; Bryant DA
    J Bacteriol; 2016 Oct; 198(19):2743-52. PubMed ID: 27457714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium
    Maeda K; Okuda Y; Enomoto G; Watanabe S; Ikeuchi M
    Elife; 2021 Jun; 10():. PubMed ID: 34127188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea dynamics during Lake Taihu cyanobacterial blooms in China.
    Lu K; Liu Z; Dai R; Gardner WS
    Harmful Algae; 2019 Apr; 84():233-243. PubMed ID: 31128808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes.
    Jiang Y; Xiao P; Liu Y; Wang J; Li R
    Harmful Algae; 2017 Apr; 64():42-50. PubMed ID: 28427571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A laboratory based exposure of Microcystis and Oscillatoria cyanobacterial isolates to heterotrophic bacteria.
    Ndlela LL; Oberholster PJ; Van Wyk JH; Cheng PH
    Toxicon; 2019 Jul; 165():1-12. PubMed ID: 31004611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance.
    Georges des Aulnois M; Roux P; Caruana A; Réveillon D; Briand E; Hervé F; Savar V; Bormans M; Amzil Z
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu.
    Zhu C; Zhang J; Nawaz MZ; Mahboob S; Al-Ghanim KA; Khan IA; Lu Z; Chen T
    Sci Total Environ; 2019 Jun; 669():29-40. PubMed ID: 30877958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.