These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 29098804)

  • 1. Fundus autofluorescence imaging in hereditary retinal diseases.
    Pichi F; Abboud EB; Ghazi NG; Khan AO
    Acta Ophthalmol; 2018 Aug; 96(5):e549-e561. PubMed ID: 29098804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence imaging: review and perspectives.
    Schmitz-Valckenberg S; Holz FG; Bird AC; Spaide RF
    Retina; 2008 Mar; 28(3):385-409. PubMed ID: 18327131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of fundus autofluorescence and widefield angiography in clinical practice.
    Banda HK; Shah GK; Blinder KJ
    Can J Ophthalmol; 2019 Feb; 54(1):11-19. PubMed ID: 30851762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical applications of fundus autofluorescence in retinal disease.
    Yung M; Klufas MA; Sarraf D
    Int J Retina Vitreous; 2016; 2():12. PubMed ID: 27847630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fundus Autofluorescence Imaging].
    Schmitz-Valckenberg S
    Klin Monbl Augenheilkd; 2015 Sep; 232(9):1050-3. PubMed ID: 26280647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared autofluorescence in young choroideremia patients.
    Mucciolo DP; Murro V; Giorgio D; Sodi A; Passerini I; Virgili G; Rizzo S
    Ophthalmic Genet; 2019 Oct; 40(5):421-427. PubMed ID: 31544579
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of stargardt disease using polarization-sensitive optical coherence tomography and fundus autofluorescence imaging.
    Ritter M; Zotter S; Schmidt WM; Bittner RE; Deak GG; Pircher M; Sacu S; Hitzenberger CK; Schmidt-Erfurth UM;
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6416-25. PubMed ID: 23882696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal imaging characteristics of congenital grouped hyper- and hypo-pigmented fundus lesions.
    Wang H; Ly A; Yapp M; Assaad N; Kalloniatis M
    Clin Exp Optom; 2020 Sep; 103(5):641-647. PubMed ID: 31769080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Near-infrared Fundus Autofluorescence: Clinical Application and Diagnostic Relevance].
    Kellner S; Weinitz S; Farmand G; Kellner U
    Klin Monbl Augenheilkd; 2022 Aug; 239(8):1059-1076. PubMed ID: 35609811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence Imaging to Evaluate Retinal Disease Progression in Rodent.
    Cheng CH; Cui X; Tsang SH
    Methods Mol Biol; 2023; 2560():229-232. PubMed ID: 36481899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization.
    Fuerst NM; Serrano L; Han G; Morgan JI; Maguire AM; Leroy BP; Kim BJ; Aleman TS
    Ophthalmic Genet; 2016 Dec; 37(4):445-452. PubMed ID: 27028354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundus autofluorescence and spectral-domain optical coherence tomography findings of leopard spots in nanophthalmic uveal effusion syndrome.
    Okuda T; Higashide T; Wakabayashi Y; Nishimura A; Sugiyama K
    Graefes Arch Clin Exp Ophthalmol; 2010 Aug; 248(8):1199-202. PubMed ID: 20300765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors.
    Stevanovic M; Cehajic Kapetanovic J; Jolly JK; MacLaren RE
    Acta Ophthalmol; 2020 May; 98(3):e322-e327. PubMed ID: 31736270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundus autofluorescence and progression of age-related macular degeneration.
    Schmitz-Valckenberg S; Fleckenstein M; Scholl HP; Holz FG
    Surv Ophthalmol; 2009; 54(1):96-117. PubMed ID: 19171212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.
    Kim DY; Hwang JC; Moore AT; Bird AC; Tsang SH
    Retina; 2010 Sep; 30(8):1217-22. PubMed ID: 20539258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atypical retinal pigment epithelial defects with retained photoreceptor layers: a so far disregarded finding in age related macular degeneration.
    Giannakaki-Zimmermann H; Querques G; Munch IC; Shroff D; Sarraf D; Chen X; Cunha-Souza E; Mrejen S; Capuano V; Rodrigues MW; Gupta C; Ebneter A; Zinkernagel MS; Munk MR
    BMC Ophthalmol; 2017 May; 17(1):67. PubMed ID: 28506260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ULTRAWIDEFIELD AUTOFLUORESENCE IN ABCA4 STARGARDT DISEASE.
    Klufas MA; Tsui I; Sadda SR; Hosseini H; Schwartz SD
    Retina; 2018 Feb; 38(2):403-415. PubMed ID: 28248825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S; Sherman J
    Optom Vis Sci; 2012 May; 89(5):E575-84. PubMed ID: 22446719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy.
    Halford S; Liew G; Mackay DS; Sergouniotis PI; Holt R; Broadgate S; Volpi EV; Ocaka L; Robson AG; Holder GE; Moore AT; Michaelides M; Webster AR
    Ophthalmology; 2014 Jun; 121(6):1174-84. PubMed ID: 24480711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundus autofluorescence imaging.
    Schmitz-Valckenberg S; Pfau M; Fleckenstein M; Staurenghi G; Sparrow JR; Bindewald-Wittich A; Spaide RF; Wolf S; Sadda SR; Holz FG
    Prog Retin Eye Res; 2021 Mar; 81():100893. PubMed ID: 32758681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.