These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 29098869)
1. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD). Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869 [TBL] [Abstract][Full Text] [Related]
2. Formulation Optimization of Freeze-Dried Long-Circulating Liposomes and In-Line Monitoring of the Freeze-Drying Process Using an NIR Spectroscopy Tool. Sylvester B; Porfire A; Van Bockstal PJ; Porav S; Achim M; Beer T; Tomuţă I J Pharm Sci; 2018 Jan; 107(1):139-148. PubMed ID: 28551424 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers. De Beer TR; Wiggenhorn M; Hawe A; Kasper JC; Almeida A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP Talanta; 2011 Feb; 83(5):1623-33. PubMed ID: 21238761 [TBL] [Abstract][Full Text] [Related]
4. Protein purification process engineering. Freeze drying: A practical overview. Gatlin LA; Nail SL Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173 [TBL] [Abstract][Full Text] [Related]
5. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810 [TBL] [Abstract][Full Text] [Related]
6. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647 [TBL] [Abstract][Full Text] [Related]
7. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations. Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C Int J Pharm; 2020 Mar; 578():119116. PubMed ID: 32027958 [TBL] [Abstract][Full Text] [Related]
8. Optimizing lyophilization primary drying: A vaccine case study with experimental and modeling techniques. Najarian J; Metsi-Guckel E; Renawala HK; Grosse D; Sims A; Walter A; Sarkar A; Karande A Int J Pharm; 2024 Jun; 659():124168. PubMed ID: 38663644 [TBL] [Abstract][Full Text] [Related]
9. Engineering of an inhalable DDA/TDB liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process. Ingvarsson PT; Yang M; Mulvad H; Nielsen HM; Rantanen J; Foged C Pharm Res; 2013 Nov; 30(11):2772-84. PubMed ID: 23794038 [TBL] [Abstract][Full Text] [Related]
10. Long-Circulating and Fusogenic Liposomes Loaded with Paclitaxel and Doxorubicin: Effect of Excipient, Freezing, and Freeze-Drying on Quality Attributes. Roque M; Geraldes D; da Silva C; Oliveira M; Nascimento L Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678715 [TBL] [Abstract][Full Text] [Related]
11. Quality by Design approach to spray drying processing of crystalline nanosuspensions. Kumar S; Gokhale R; Burgess DJ Int J Pharm; 2014 Apr; 464(1-2):234-42. PubMed ID: 24412337 [TBL] [Abstract][Full Text] [Related]
12. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying. Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910 [TBL] [Abstract][Full Text] [Related]
13. Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development. Ma X; Wang DQ; Bouffard R; MacKenzie A Pharm Res; 2001 Feb; 18(2):196-202. PubMed ID: 11405291 [TBL] [Abstract][Full Text] [Related]
14. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration. van Winden EC; Zhang W; Crommelin DJ Pharm Res; 1997 Sep; 14(9):1151-60. PubMed ID: 9327441 [TBL] [Abstract][Full Text] [Related]
15. Cake shrinkage during freeze drying: a combined experimental and theoretical study. Rambhatla S; Obert JP; Luthra S; Bhugra C; Pikal MJ Pharm Dev Technol; 2005; 10(1):33-40. PubMed ID: 15776811 [TBL] [Abstract][Full Text] [Related]
16. Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique. Xiang J; Hey JM; Liedtke V; Wang DQ Int J Pharm; 2004 Jul; 279(1-2):95-105. PubMed ID: 15234798 [TBL] [Abstract][Full Text] [Related]
17. Adverse effect of cake collapse on the functional integrity of freeze-dried bull spermatozoa. Hara H; Tagiri M; Hwang IS; Takahashi M; Hirabayashi M; Hochi S Cryobiology; 2014 Jun; 68(3):354-60. PubMed ID: 24747720 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the manufacturing process of a complex amphotericin B liposomal formulation using quality by design approach. Liu H; Rivnay B; Avery K; Myung JH; Kozak D; Landrau N; Nivorozhkin A; Ashraf M; Yoon S Int J Pharm; 2020 Jul; 585():119473. PubMed ID: 32473373 [TBL] [Abstract][Full Text] [Related]
19. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance. Esfandiary R; Gattu SK; Stewart JM; Patel SM J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959 [TBL] [Abstract][Full Text] [Related]