These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 2909895)
1. Structure of the membrane-pore-forming fragment of colicin A. Parker MW; Pattus F; Tucker AD; Tsernoglou D Nature; 1989 Jan; 337(6202):93-6. PubMed ID: 2909895 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of colicin Ia. Wiener M; Freymann D; Ghosh P; Stroud RM Nature; 1997 Jan; 385(6615):461-4. PubMed ID: 9009197 [TBL] [Abstract][Full Text] [Related]
4. High-resolution crystal structure of a truncated ColE7 translocation domain: implications for colicin transport across membranes. Cheng YS; Shi Z; Doudeva LG; Yang WZ; Chak KF; Yuan HS J Mol Biol; 2006 Feb; 356(1):22-31. PubMed ID: 16360169 [TBL] [Abstract][Full Text] [Related]
5. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro. Nardi A; Slatin SL; Baty D; Duché D J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342 [TBL] [Abstract][Full Text] [Related]
6. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1. Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053 [TBL] [Abstract][Full Text] [Related]
7. Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR. Böhme S; Padmavathi PV; Holterhues J; Ouchni F; Klare JP; Steinhoff HJ Phys Chem Chem Phys; 2009 Aug; 11(31):6770-7. PubMed ID: 19639151 [TBL] [Abstract][Full Text] [Related]
8. The channel domain of colicin A is inhibited by its immunity protein through direct interaction in the Escherichia coli inner membrane. Espesset D; Duché D; Baty D; Géli V EMBO J; 1996 May; 15(10):2356-64. PubMed ID: 8665842 [TBL] [Abstract][Full Text] [Related]
9. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
10. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation. Evans LJ; Goble ML; Hales KA; Lakey JH Biochemistry; 1996 Oct; 35(40):13180-5. PubMed ID: 8855956 [TBL] [Abstract][Full Text] [Related]
11. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
12. Unfolding pathway of the colicin E1 channel protein on a membrane surface. Lindeberg M; Zakharov SD; Cramer WA J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556 [TBL] [Abstract][Full Text] [Related]
13. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR. Yao XL; Hong M Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605 [TBL] [Abstract][Full Text] [Related]
14. Integration of the colicin A pore-forming domain into the cytoplasmic membrane of Escherichia coli. Duché D; Corda Y; Géli V; Baty D J Mol Biol; 1999 Feb; 285(5):1965-75. PubMed ID: 9925778 [TBL] [Abstract][Full Text] [Related]
15. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807 [TBL] [Abstract][Full Text] [Related]
16. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. Sobko AA; Kotova EA; Antonenko YN; Zakharov SD; Cramer WA FEBS Lett; 2004 Oct; 576(1-2):205-10. PubMed ID: 15474038 [TBL] [Abstract][Full Text] [Related]
17. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers. Lambotte S; Jasperse P; Bechinger B Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746 [TBL] [Abstract][Full Text] [Related]
18. Uptake across the cell envelope and insertion into the inner membrane of ion channel-forming colicins in E coli. Baty D; Pattus F; Parker M; Benedetti H; Frenette M; Bourdineaud JP; Cavard D; Knibiehler M; Lazdunski C Biochimie; 1990; 72(2-3):123-30. PubMed ID: 1696132 [TBL] [Abstract][Full Text] [Related]
19. Structural stability and domain organization of colicin E1. Griko YV; Zakharov SD; Cramer WA J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734 [TBL] [Abstract][Full Text] [Related]
20. Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB. Collins ES; Whittaker SB; Tozawa K; MacDonald C; Boetzel R; Penfold CN; Reilly A; Clayden NJ; Osborne MJ; Hemmings AM; Kleanthous C; James R; Moore GR J Mol Biol; 2002 May; 318(3):787-804. PubMed ID: 12054823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]