These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 290992)

  • 61. Oxygen requirements for vitamin K-dependent carboxylation and epoxide formation.
    Canfield LM
    Biochim Biophys Acta; 1986 Jan; 869(1):112-4. PubMed ID: 3942748
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Matrix Gla protein synthesis and gamma-carboxylation in the aortic vessel wall and proliferating vascular smooth muscle cells--a cell system which resembles the system in bone cells.
    Wallin R; Cain D; Sane DC
    Thromb Haemost; 1999 Dec; 82(6):1764-7. PubMed ID: 10613667
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis of fluoro- and hydroxy-derivatives of vitamin K as substrates or inhibitors of the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW
    Biofactors; 1992 Jan; 3(3):205-9. PubMed ID: 1599614
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Absence of Vitamin K-Dependent γ-Carboxylation in Human Periostin Extracted from Fibrotic Lung or Secreted from a Cell Line Engineered to Optimize γ-Carboxylation.
    Annis DS; Ma H; Balas DM; Kumfer KT; Sandbo N; Potts GK; Coon JJ; Mosher DF
    PLoS One; 2015; 10(8):e0135374. PubMed ID: 26273833
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new model for vitamin K-dependent carboxylation: the catalytic base that deprotonates vitamin K hydroquinone is not Cys but an activated amine.
    Rishavy MA; Pudota BN; Hallgren KW; Qian W; Yakubenko AV; Song JH; Runge KW; Berkner KL
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13732-7. PubMed ID: 15365175
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The vitamin K dependent reaction.
    Johnson BC
    J Chromatogr; 1988 May; 440():499-508. PubMed ID: 3042801
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stimulation of vitamin K-dependent carboxylation by pyridoxal-5'-phosphate.
    Dubin A; Suen ET; Delaney R; Chiu A; Johnson BC
    Biochem Biophys Res Commun; 1979 Jun; 88(3):1024-9. PubMed ID: 465069
    [No Abstract]   [Full Text] [Related]  

  • 68. Derivatives of 2-methyl-1,4-naphthoquinone as substrates and inhibitors of the vitamin K dependent carboxylase.
    Dhaon MK; Lehrman SR; Rich DH; Engelke JA; Suttie JW
    J Med Chem; 1984 Sep; 27(9):1196-201. PubMed ID: 6332196
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bimodal frequency distribution of rat hepatic vitamin K-dependent carboxylation rate.
    Cocchetto DM; Bjornsson TD
    Life Sci; 1986 Nov; 39(21):1977-83. PubMed ID: 3784766
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A fluorescent method to determine vitamin K-dependent gamma-glutamyl carboxylase activity.
    Kaesler N; Schettgen T; Mutucumarana VP; Brandenburg V; Jahnen-Dechent W; Schurgers LJ; Krüger T
    Anal Biochem; 2012 Feb; 421(2):411-6. PubMed ID: 22210513
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vitamin K-dependent carboxylation in the developing rat: evidence for a similar mechanism of action of warfarin in fetal and adult livers.
    Wallin R
    Pediatr Res; 1989 Oct; 26(4):370-6. PubMed ID: 2508052
    [TBL] [Abstract][Full Text] [Related]  

  • 72. No strict coupling of vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone)-dependent carboxylation and vitamin K1 epoxidation in detergent-solubilized microsomal fractions from rat liver.
    Wallin R
    Biochem J; 1979 Mar; 178(3):513-9. PubMed ID: 454361
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vitro effects of various heterocyclic thiol compounds and beta-lactam antibiotics on vitamin K-dependent gamma-glutamylcarboxylation activity in liver microsomes.
    Oka T; Touchi A; Ezumi K; Yamakawa M; Matsubara T
    Jpn J Pharmacol; 1988 Feb; 46(2):165-72. PubMed ID: 3379826
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prodrug for bioreductive activation-independent delivery of menahydroquinone-4: human liver enzymatic activation and its action in warfarin-poisoned human liver.
    Takata J; Karube Y; Hanada M; Matsunaga K; Iwasaki H
    Biol Pharm Bull; 1999 Feb; 22(2):172-8. PubMed ID: 10077437
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Vitamin K-dependent carboxylation of synthetic substrates. Nature of the products.
    Decottignies-Le Maréchal P; Rikong-Aide H; Azerad R; Gaudry M
    Biochem Biophys Res Commun; 1979 Oct; 90(3):700-7. PubMed ID: 508335
    [No Abstract]   [Full Text] [Related]  

  • 76. New developments in the study of the vitamin K-dependent carboxylation system.
    Olson RE
    World Rev Nutr Diet; 1978; 31():216-25. PubMed ID: 735138
    [No Abstract]   [Full Text] [Related]  

  • 77. Effect of biliary diversion on the ability of cefamandole to inhibit vitamin K metabolism.
    Tibbitts JS; Lipsky JJ
    Drug Metabol Drug Interact; 1989; 7(2-3):149-60. PubMed ID: 2630177
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of the quinone in oxidative phosphorylation. Evidence against carbon-hydrogen bond cleavage.
    Di Mari SJ; Snyder CD; Rapoport H
    Biochemistry; 1968 Jun; 7(6):2301-17. PubMed ID: 5660055
    [No Abstract]   [Full Text] [Related]  

  • 79. Mechanism of the inhibition of the gamma-carboxylation of glutamic acid by N-methylthiotetrazole-containing antibiotics.
    Lipsky JJ
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2893-7. PubMed ID: 6585834
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhibition of vitamin K-dependent carboxylase by metal ions and metal complexes: a reassessment.
    Kanabus-Kaminska JM; Girardot JM
    Arch Biochem Biophys; 1984 Feb; 228(2):646-52. PubMed ID: 6696452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.