BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29099403)

  • 1. Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics.
    Zelena D; Demeter K; Haller J; Balázsfi D
    Behav Pharmacol; 2017 Dec; 28(8):598-609. PubMed ID: 29099403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational PET applications for brain circuit mapping with transgenic neuromodulation tools.
    Boehm MA; Bonaventura J; Gomez JL; Solís O; Stein EA; Bradberry CW; Michaelides M
    Pharmacol Biochem Behav; 2021 May; 204():173147. PubMed ID: 33549570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic inhibition of behavior with anion channelrhodopsins.
    Mohammad F; Stewart JC; Ott S; Chlebikova K; Chua JY; Koh TW; Ho J; Claridge-Chang A
    Nat Methods; 2017 Mar; 14(3):271-274. PubMed ID: 28114289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetics in a transparent animal: circuit function in the larval zebrafish.
    Portugues R; Severi KE; Wyart C; Ahrens MB
    Curr Opin Neurobiol; 2013 Feb; 23(1):119-26. PubMed ID: 23246238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic manipulation of neural circuits in awake marmosets.
    MacDougall M; Nummela SU; Coop S; Disney A; Mitchell JF; Miller CT
    J Neurophysiol; 2016 Sep; 116(3):1286-94. PubMed ID: 27334951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of electrical activity in small diameter fibers of the murine peripheral nerve with virally-delivered GCaMP6f.
    Anderson HE; Fontaine AK; Caldwell JH; Weir RF
    Sci Rep; 2018 Feb; 8(1):3219. PubMed ID: 29459701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.
    Sizemore RJ; Seeger-Armbruster S; Hughes SM; Parr-Brownlie LC
    J Neurophysiol; 2016 Apr; 115(4):2124-46. PubMed ID: 26888111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics.
    Wang S; Kugelman T; Buch A; Herman M; Han Y; Karakatsani ME; Hussaini SA; Duff K; Konofagou EE
    Sci Rep; 2017 Jan; 7():39955. PubMed ID: 28059117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread functional opsin transduction in the rat cortex via convection-enhanced delivery optimized for horizontal spread.
    Yu Z; Nurmikko A; Ozden I
    J Neurosci Methods; 2017 Nov; 291():69-82. PubMed ID: 28807859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience.
    Ting JT; Feng G
    Behav Brain Res; 2013 Oct; 255():3-18. PubMed ID: 23473879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetics in primates: a shining future?
    Gerits A; Vanduffel W
    Trends Genet; 2013 Jul; 29(7):403-11. PubMed ID: 23623742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals.
    Srinivasan S; Hosokawa T; Vergara P; Chérasse Y; Naoi T; Sakurai T; Sakaguchi M
    Biochem Biophys Res Commun; 2019 Sep; 517(3):520-524. PubMed ID: 31376934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.
    Wu F; Stark E; Ku PC; Wise KD; Buzsáki G; Yoon E
    Neuron; 2015 Dec; 88(6):1136-1148. PubMed ID: 26627311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonhuman Primate Optogenetics: Recent Advances and Future Directions.
    Galvan A; Stauffer WR; Acker L; El-Shamayleh Y; Inoue KI; Ohayon S; Schmid MC
    J Neurosci; 2017 Nov; 37(45):10894-10903. PubMed ID: 29118219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.